首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.  相似文献   

2.
3.
Address correspondence and offprint requests to: M. F. Seldin.  相似文献   

4.
A soluble fragment of the high-affinity IgE receptor FcεRI α-chain (sFcεRIα) binds to the Fc fragment of IgE (IgE-Fc) as a 1:1 complex. IgE-Fc consists of a dimer of the Cε2, Cε3 and Cε4 domains of the ε-heavy chain of IgE. This region of IgE has been modelled on the crystal structure of the Fc region of IgG1, which exhibits twofold rotational symmetry. This implies that IgE should be divalent with respect to its ligands. X-ray scattering studies reveal however that the twofold rotational symmetry of IgE-Fc is perturbed by a bend in the linker region between the Cε2 and Cε3 domains. The 1:1 stoichiometry could then arise from the conformational asymmetry or from steric occlusion of one of the sites by the overhanging Cε2 domains. To test this hypothesis we have expressed a recombinant ε-chain fragment containing Cε3 and Cε4. This product, Fcε3–4, is secreted from cells as a disulphide linked dimer and binds with higher affinity than either IgE or IgE-Fc to cell surface FcεRI. Titration experiments, together with molecular mass measurements of the Fcε3–4/sFcεRIα complex, reveal that Fcε3–4 binds only a single receptor molecule. This excludes the possibility that steric hindrance by Cε2 accounts for the unexpected stoichiometry. Received: 31 July 1996 / Accepted: 1 December 1996  相似文献   

5.
6.
Zhang G  Qiao S  Li Q  Wang X  Duan Y  Wang L  Xiao Z  Xia C 《Immunogenetics》2006,58(10):845-849
Receptors for the Fc region (FcγRs) of immunoglobulin G (IgG) play a crucial role in the immune system and host protection against infection. In this study, we describe the cloning, sequencing, and expression of the high-affinity IgG receptor from pig. By screening a translated Expressed Sequence Tags database with the human FcγRI (CD64) protein sequence, we identified a putative porcine homologue. Subsequent polymerase chain reaction amplification confirmed that the identified full-length cDNA was expressed in porcine cells. Rosetting analysis shows that COS-7 cells transfected with a plasmid containing the cloned cDNA were able to bind chicken erythrocytes sensitized with porcine IgG. Scatchard analysis indicated that monomeric IgG bound to transiently transfected cells with an affinity of approximately 4×107 M−1. The porcine FcγRI cDNA is 1,038 nucleotides long and is predicted to encode a 346-amino-acid transmembrane glycoprotein composed of three Ig-like domains, a transmembrane region, and a short cytoplasmic tail. The overall identity of the porcine FcγRI to its human and mouse counterparts at the level of the amino acid sequence was 75% and 57%, respectively. Identification of porcine FcγRI will aid in the understanding of the molecular basis of the porcine immune system and further studies of the receptor function.Gaiping Zhang and Songlin Qiao contributed equally to this study.The GenBank accession number of the nucleotide sequence reported here is DQ026063.  相似文献   

7.
Antibody-dependent cellular cytotoxicity (ADCC) is one of the important mechanisms of action of the targeting of tumor cells by therapeutic monoclonal antibodies (mAbs). Among the human Fcγ receptors (FcγRs), FcγRIIIa is well known as the only receptor expressed in natural killer (NK) cells, and it plays a pivotal role in ADCC by IgG1-subclass mAbs. In addition, the contributions of FcγRIIa to mAb-mediated cytotoxicity have been reported. FcγRIIa is expressed in myeloid effector cells including neutrophils and macrophages, and it is involved in the activation of these effector cells. However, the measurement of the cytotoxicity via FcγRIIa-expressing effector cells is complicated and inconvenient for the characterization of therapeutic mAbs. Here we report the development of a cell-based assay using a human FcγRIIa-expressing reporter cell line. The FcγRIIa reporter cell assay was able to estimate the activation of FcγRIIa by antigen-bound mAbs by a very simple method in vitro. The usefulness of this assay for evaluating the activity of mAbs with different abilities to activate FcγRIIa was confirmed by the examples including the comparison of the activity of the anti-CD20 mAb rituximab and its Fc-engineered variants, and two anti-EGFR mAbs with different IgG subclasses, cetuximab (IgG1) and panitumumab (IgG2). We also applied this assay to the characterization of a force-oxidized mAb, and we observed that oxidation significantly decreased the FcγRIIa activation by EGFR-bound cetuximab. These results suggest that our FcγRIIa reporter assay is a promising tool for the characterization of therapeutic mAbs, including Fc-engineered mAbs, IgG2-subclass mAbs, and their product-related variants.  相似文献   

8.
The high-affinity IgE Fc receptor (FcεRI) β chain acts as a signal amplifier through the immunoreceptor tyrosine-based activation motif in its C-terminal intracellular region. Polymorphisms in FcεRI β have been linked to atopy, asthma, and allergies. We investigated the secondary structure, conformation, and thermal stability of FcεRI β polymorphic (β-L172I, β-L174V, and β-E228G) proteins. Polymorphisms did not affect the secondary structure and conformation of FcεRI β. However, we calculated Gibbs free energy of unfolding (ΔGunf) and significant differences were observed in ΔGunf values between the wild-type FcεRI β (β-WT) and β-E228G. These results suggested that β-E228G affected the thermal stability of FcεRI β. The role of β-E228G in biological functions and its involvement in allergic reactions have not yet been elucidated in detail; therefore, differences in the thermal stability of β-E228G may affect the function of FcεRI β.  相似文献   

9.
Aggregation of the multichain (α β γ2) high-affinity IgE receptor (Fcε RI) initiates a signaling cascade that results in the release of allergic mediators. The cytoplasmic tails of the Fcε RI-β and -γ subunits contain immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylation of the γ ITAM mediates activation of Syk kinase and is sufficient for triggering the responses induced by Fcε RI crosslinking. Phosphorylation of the β ITAM is insufficient to mediate cell activation. The rat β ITAM contains three tyrosines (Tyr218, Tyr224, and Tyr228) with an intermediate noncanonical tyrosine. Synthetic peptides based on the ITAM of the Fcε RI-β subunit were used to investigate the role of each phosphotyrosine in the binding of signaling proteins to this motif. Among the proteins that bind to phosphorylated β ITAM are Syk, Grb2, Shc, SHIP, and SHP-1, and binding does not depend on previous cell activation. Nonphosphorylated peptides do not bind these proteins. Syk binding to β -peptides is dependent on the number and position of phosphotyrosines in the ITAM. Phosphorylation of Tyr218 seems to be most important for Syk binding. Recruitment of Syk and other signaling proteins to the β -subunit might be important for its amplifier role.  相似文献   

10.
Activating Fc gamma receptors (FcγRs) have been identified as having important roles in the inflammatory joint reaction in rheumatoid arthritis (RA) and murine models of arthritis. However, the role of the inhibitory FcγRIIb in the regulation of the synovial inflammation in RA is less known. Here we have investigated synovial tissue from RA patients using a novel monoclonal antibody (GB3) specific for the FcγRIIb isoform. FcγRIIb was abundantly expressed in synovia of RA patients, in sharp contrast to the absence or weak staining of FcγRIIb in synovial biopsies from healthy volunteers. In addition, the expression of FcγRI, FcγRII and FcγRIII was analyzed in synovia obtained from early and late stages of RA. Compared with healthy synovia, which expressed FcγRII, FcγRIII but not FcγRI, all activating FcγRs were expressed and significantly up-regulated in RA, regardless of disease duration. Macrophages were one of the major cell types in the RA synovium expressing FcγRIIb and the activating FcγRs. Anti-inflammatory treatment with glucocorticoids reduced FcγR expression in arthritic joints, particularly that of FcγRI. This study demonstrates for the first time that RA patients do not fail to up-regulate FcγRIIb upon synovial inflammation, but suggests that the balance between expression of the inhibitory FcγRIIb and activating FcγRs may be in favour of the latter throughout the disease course. Anti-inflammatory drugs that target activating FcγRs may represent valuable therapeutics in this disease.  相似文献   

11.
IgG FcRs are important mediators of immunity and play a key role during Ab-based immunotherapy. Within the leukocyte IgG receptor family, only FcγRI is capable of IgG binding with high affinity. FcγRI exists as a complex of a ligand binding α-chain and an FcR γ-chain. The receptors' α-chain can, furthermore, elicit several functions independent of the ITAM-bearing FcR γ-chain. Functional implications of high-affinity IgG binding and mechanisms underlying FcR γ-chain-independent signaling remain unclear to this day. In this paper, we provide an overview of past literature on FcγRI and address the implications of recently described interactions between cytosolic proteins and the FcγRI α-chain, as well as cytokine-enhanced FcγRI immune complex binding. Furthermore, an analysis of potential polymorphisms within the FCGR1A gene is provided.  相似文献   

12.
Isotype plays a crucial role in therapeutic monoclonal antibody (mAb) function, mediated in large part through differences in Fcγ receptor (FcγR) interaction. Monoclonal Abs such as rituximab and alemtuzumab, which bind target cells directly, are designed for efficient recruitment of immune effector cells through their activatory FcγR engagement to mediate maximal target cell killing. In this setting, binding to inhibitory FcγRIIB is thought to inhibit function, making mAbs with high activatory/inhibitory (A/I) FcγR binding ratios, such as mouse IgG2a and human IgG1, the first choice for this role. In contrast, exciting new data show that agonistic mAbs directed against the tumour necrosis factor receptor superfamily member CD40 require interaction with FcγRIIB for in vivo function. Such ligation activates antigen-presenting cells, promotes myeloid and CTL responses and potentially stimulates effective anti-cancer immunity. It appears that the role of FcγRIIB is to mediate mAb hyper-crosslinking to allow CD40 downstream intracellular signalling. Previous work has shown that mAbs directed against other TNFR family members, Fas and death receptor 5 and probably death receptor 4, also require FcγRIIB hyper-crosslinking to promote target cell apoptosis, suggesting a common mechanism of action. In mouse models, IgG1 is optimal for these agents as it binds to FcγRIIB with tenfold higher affinity than IgG2a and hence has a relatively low A:I FcγR binding ratio. In contrast, human IgG isotypes have a universally low affinity for FcγRIIB, but in the case of human IgG1, engineering the Fc to increase its affinity for FcγRIIB can potentially overcome this problem. Thus, modifying the A/I binding ratio of human IgG Fc can be used to optimise different types of therapeutic activity by enhancing cytotoxic or hyper-crosslinking function.  相似文献   

13.
The human low affinity FcγRII family includes both the activating receptor FcγRIIA and the inhibitory receptor FcγRIIB2. These receptors have opposing signaling functions but are both capable of internalizing IgG-containing immune complexes through clathrin-mediated endocytosis. We demonstrate that upon engagement by multivalent aggregated human IgG, FcγRIIA expressed in ts20 Chinese hamster fibroblasts is delivered along with its ligand to lysosomal compartments for degradation, while FcγRIIB2 dissociates from the ligand and is routed separately into the recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase activity or ubiquitylation of receptor lysine residues. The sorting of FcγRIIB2 away from a degradative fate is not due to its lower affinity for IgG and occurs even upon persistent receptor aggregation. Upon co-engagement of FcγRIIA and FcγRIIB2, the receptors are sorted independently to distinct final fates after dissociation of co-clustering ligand. These results reveal fundamental differences in the trafficking behavior of different Fcγ receptors.  相似文献   

14.
15.
16.
17.
18.
S Yamauchi  K Kawauchi  Y Sawada 《FEBS letters》2012,586(19):3229-3235
Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.  相似文献   

19.
Stroke is a leading cause of death in the United States. As ~60% of strokes result from carotid plaque rupture, elucidating the mechanisms that underlie vulnerability is critical for therapeutic intervention. We tested the hypothesis that stable and vulnerable human plaques differentially express genes associated with matrix degradation. Examination established that femoral, and the distal region of carotid, plaques were histologically stable while the proximal carotid plaque regions were vulnerable. Quantitative RT-PCR was used to compare expression of 22 genes among these tissues. Distal carotid and femoral gene expression was not significantly different, permitting the distal carotid segments to be used as a paired control for their corresponding proximal regions. Analysis of the paired plaques revealed differences in 16 genes that impact plaque stability: matrix metalloproteinases (MMP, higher in vulnerable), MMP modulators (inhibitors: lower, activators: higher in vulnerable), activating Fc receptors (FcγR, higher in vulnerable) and FcγR signaling molecules (higher in vulnerable). Surprisingly, the relative expression of smooth muscle cell and macrophage markers in the three plaque types was not significantly different, suggesting that macrophage distribution and/or activation state correlates with (in)stability. Immunohistochemistry revealed that macrophages and smooth muscle cells localize to distinct and non-overlapping regions in all plaques. MMP protein localized to macrophage-rich regions. In vitro, treatment of macrophages with immune complexes, but not oxidized low density lipoprotein, C-reactive protein, or TNF-α, induced a gene expression profile similar to that of the vulnerable plaques. That ligation of FcγR recapitulates the pattern of gene expression in vulnerable plaques suggests that the FcγR → macrophage activation pathway may play a greater role in human plaque vulnerability than previously appreciated.  相似文献   

20.
Huang Y  Yin H  Wang J  Liu Q  Wu C  Chen K 《Gene》2012,498(1):91-95
Previous studies have documented that Fc receptor III A of immunoglobulin G (FcγRIIIA, also named CD16) is involved in the development of coronary heart disease (CHD). However, the mechanism responsible for FcγRIIIA's in contribution to CHD development remains largely unclear. Herein, we investigated the possible role of FcγRIIIA in the development of atherosclerosis. Our results showed that the elevated level of FcγRIIIA on monocytes closely correlated to the adhesive efficiency of human umbilical vein endothelial cells (HUVECs) in vitro. Importantly, we also observed increased population of CD16(+) monocytes and elevated CD16 level on monocytes in ApoE(-/-) mice with characterized atherosclerosis after feeding with high-fat diet for 10weeks. The enhancement of CD16 on monocytes closely correlated to increased content of MMP-9 in aorta and increased inflammatory cytokines in sera. In addition, similar to simvastatin, recombinant human M-CSF represented a robust inhibitory influence on plaque instability and inflammation. Taken together, these data established that FcγRIIIA (CD16)-mediated signaling orchestrated by interaction between monocytes and HUVECs, coupled with inflammatory cytokine stimulation and MMP activation, as a fundamental pathway linked to the development of atherosclerotic formation. Inhibition of FcγRIIIA or its signaling thus might represent a promising approach for the prevention and treatment of CHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号