首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling via TLRs results in dendritic cell (DC) activation/maturation and plays a critical role in the outcome of primary immune responses. So far, no data exist concerning TLR expression by liver DC, generally regarded as less immunostimulatory than secondary lymphoid tissue DC. Because the liver lies directly downstream from the gut, it is constantly exposed to bacterial LPS, a TLR4 ligand. We examined TLR4 expression by freshly isolated, flow-sorted C57BL/10 mouse liver DC compared with spleen DC. Real-time PCR revealed that liver CD11c+CD8alpha- (myeloid) and CD11c+CD8alpha+ ("lymphoid-related") DC expressed lower TLR4 mRNA compared with their splenic counterparts. Lower TLR4 expression correlated with reduced capacity of LPS (10 ng/ml) but not anti-CD40-stimulated liver DC to induce naive allogeneic (C3H/HeJ) T cell proliferation. By contrast to LPS-stimulated splenic DC, these LPS-activated hepatic DC induced alloantigen-specific T cell hyporesponsiveness in vitro, correlated with deficient Th1 (IFN-gamma) and Th2 (IL-4) responses. When higher LPS concentrations (> or =100 ng/ml) were tested, the capacity of liver DC to induce proliferation of T cells and Th1-type responses was enhanced, but remained inferior to that of splenic DC. Hepatic DC activated by LPS in vivo were inferior allogeneic T cell stimulators compared with splenic DC, whereas adoptive transfer of LPS-stimulated (10 ng/ml) liver DC induced skewing toward Th2 responses. These data suggest that comparatively low expression of TLR4 by liver DC may limit their response to specific ligands, resulting in reduced or altered activation of hepatic adaptive immune responses.  相似文献   

2.
3.
Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-α and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.  相似文献   

4.
Dendritic cells (DC) are potent antigen presenting cells capable of inducing immune responses. DC are widely used as vaccine adjuvant in experimental clinical settings. DC-based vaccines are normally generated using a standard 8 day DC protocol (SDDC). In attempts to shorten the vaccine production we have developed fast DC protocol by comparing two different fast DC protocols with SDDC. DC were evaluated by FACS analysis, and the optimal profile was considered: CD14low, CD80high, CD83high, CD86high, CCR7high, HLA class I and IIhigh. FACS profiles were used as the selection criteria together with yield and morphology. Two fast DC protocols fulfilled these criteria and were selected for functional analysis. Our results demonstrate that DC generated within 5 days or 48 h are comparable with SDDC both phenotypically and functionally. However, we found that 48 h DC were more susceptible than SDDC to the IL-10 inducing stimulus of TLR ligands (R848 and LPS). Thus to determine the clinical relevance of fast DC protocols in cancer settings, small phase I trials should be conducted monitoring regulatory T cells carefully.  相似文献   

5.
Stimulation of naive mouse dendritic cells (DC) with LPS or Pam(3)CSK(4) (P3C) induces production of TNF-alpha via TLR4- or TLR2-signaling. Although tolerance in macrophages has been studied in detail, we investigated the role of TLR agonist concentration and IL-6 for tolerance in DC. P3C- or LPS-primed DC were nonresponsive to P3C or LPS restimulation in terms of TNF-alpha but not IL-6 production. The mechanisms involved in tolerance were dependent on the concentration of the TLR ligand used for DC priming. DC primed with LPS or P3C at high concentrations developed a maturation dependent, IL-6 independent tolerance associated with inhibition of TLR signaling upstream of IkappaB as indicated by decreased IkappaB degradation. In contrast, priming of DC with LPS or P3C at low concentrations resulted in IL-6-dependent tolerance, which was abolished in IL-6 deficient DC, and was not accompanied by maturation of DC or by down-regulation of TLR2 or TLR4. In homotolerogenic DC primed with LPS or P3C at high concentrations, degradation of IkappaB upon restimulation with LPS or P3C was inhibited suggesting tolerance mechanism(s) upstream of IkappaB; in contrast, cross-tolerance in DC primed with LPS or P3C at low concentrations was not associated with reduced IkappaB degradation suggesting tolerance mechanisms downstream of IkappaB. Our data indicate that in naive DC TLR4- and TLR2-stimulation results in homo- and cross-tolerance; the mechanisms involved in tolerance depend on the concentration of the TLR agonist used for DC priming and are governed by IL-6 and maturation.  相似文献   

6.
Induction of antitumor immunity by dendritic cell (DC)-tumor fusion cells (DC/tumor) can be modulated by their activation status. In this study, to address optimal status of DC/tumor to induce efficient antigen-specific cytotoxic T lymphocytes (CTLs), we have created various types of DC/tumor: 1) un-activated DC/tumor; 2) penicillin-killed Streptococcus pyogenes (OK-432; TLR4 agonist)-activated DC/tumor; 3) protein-bound polysaccharides isolated from Coriolus versicolor (PSK; TLR2 agonist)-activated DC/tumor; and 4) Combined OK-432- and PSK-activated DC/tumor. Moreover, we assessed the effects of TGF-β1 derived from DC/tumor on the induction of MUC1-specific CTLs. Combined TLR2- and TLR4-activated DC/tumor overcame immune-suppressive effect of TGF-β1 in comparison to those single activated or un-activated DC/tumor as demonstrated by: 1) up-regulation of MHC class II and CD86 expression on DC/tumor; 2) increased fusion efficiency; 3) increased production of fusions derived IL-12p70; 4) activation of CD4+ and CD8+ T cells that produce high levels of IFN-γ; 5) augmented induction of CTL activity specific for MUC1; and 6) superior efficacy in inhibiting CD4+CD25+Foxp3+ T cell generation. However, DC/tumor-derived TGF-β1 reduced the efficacy of DC/tumor vaccine in vitro. Incorporating combined TLRs-activation and TGF-β1-blockade of DC/tumor may enhance the effectiveness of DC/tumor-based cancer vaccines and have the potential applicability to the field of adoptive immunotherapy.  相似文献   

7.
8.
To better understand the relative efficiencies of using different TLR ligand-activated DCs to induce human CD4+ T lymphocyte responses, human DCs were activated with two viral and two bacterial TLR ligands, and their production of IL12, TNFα, and IL10 was examined. While the two viral TLR ligands (ssRNA and dsRNA) induced DC production of detectable levels of IL12p70, DCs activated by the two bacterial TLR ligands (LPS and flagellin) induced increased proliferation of human allogeneic naïve CD4+ T cells. dsRNA-activated DCs induced increased Th1 and decreased Th2 differentiation, resulting in extremely polarized responses relative to those induced by unstimulated and other TLR ligand-activated DCs. Neutralization of IL12p70 abrogated most of the Th1 skewing induced by all TLR ligand-activated moDCs. Collectively, these results demonstrate that dsRNA-activated DCs induce more highly polarized human Th1 responses than the other TLR ligand-activated DCs tested here. These results have implications for TLR ligands in immunotherapy.  相似文献   

9.
Migration of dendritic cells (DCs) plays an important role in T‐cell‐mediated adaptive immune responses. Lipopolysaccharide (LPS) sensed by Toll‐like receptor 4 (TLR4) serves as a signal for DC migration. We analyzed LPS‐induced DC volume changes preceding the directed movement towards chemoattractants. Treatment with LPS resulted in rapid, prolonged cell swelling in wild‐type (WT), but not in TLR4?/? bone marrow‐derived (BM) DCs indicating that TLR4 signaling is essential for LPS‐induced swelling. As a consequence, LPS‐treatment enhanced the migratory activity along a chemokine (CCL21)‐gradient in WT, but not in TLR4‐deficient BMDCs suggesting that the LPS/TLR4‐induced swelling response facilitates DC migration. Moreover, the role of calcium‐activated potassium channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS‐challenged BMDCs. We found that the LPS‐induced swelling of KCa3.1‐deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS‐induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1‐deficient DCs. Finally, directed migration of LPS‐challenged KCa3.1‐deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS‐induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS‐activated DCs as an important feature of the adaptive immune response.
  相似文献   

10.
Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4+ T and CD8+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.  相似文献   

11.
Fimbriae target bacteria to different mucosal surfaces and enhance the inflammatory response at these sites. Inflammation may be triggered by the fimbriae themselves or by fimbriae-dependent delivery of other host activating molecules such as lipopolysaccharide (LPS). Although LPS activates systemic inflammation through the CD14 and Toll-like receptor 4 (TLR4) pathways, mechanisms of epithelial cell activation by LPS are not well understood. These cells lack CD14 receptors and are unresponsive to pure LPS, but fimbriated Escherichia coli overcome this refractoriness and trigger epithelial cytokine responses. We now show that type 1 fimbriae can present an LPS- and TLR4-dependent signal to the CD14-negative epithelial cells. Human uroepithelial cells were shown to express TLR4, and type 1 fimbriated E. coli strains triggered an LPS-dependent response in those cells. A similar LPS- and fimbriae-dependent response was observed in the urinary tract of TLR4-proficient mice, but not in TLR4-defective mice. The moderate inflammatory response in the TLR4-defective mice was fimbriae dependent but LPS independent. The results demonstrate that type 1 fimbriae present LPS to CD14-negative cells and that the TLR4 genotype determines this response despite the absence of CD14 on the target cells. The results illustrate how the host "sees" LPS and other microbial products not as purified molecules but as complexes, and that fimbriae determine the molecular context in which LPS is presented to host cells.  相似文献   

12.
MD-2, a glycoprotein that is essential for the innate response to lipopolysaccharide (LPS), binds to both LPS and the extracellular domain of Toll-like receptor 4 (TLR4). Following synthesis, MD-2 is either secreted directly into the medium as a soluble, active protein, or binds directly to TLR4 in the endoplasmic reticulum before migrating to the cell surface. Here we investigate the function of the secreted form of MD-2. We show that secreted MD-2 irreversibly loses activity over a 24-h period at physiological temperature. LPS, but not lipid A, prevents this loss in activity by forming a stable complex with MD-2, in a CD14-dependent process. Once formed, the stable MD-2.LPS complex activates TLR4 in the absence of CD14 or free LPS indicating that the activating ligand of TLR4 is the MD-2.LPS complex. Finally we show that the MD-2.LPS complex, but not LPS alone, induces epithelial cells, which express TLR4 but not MD-2, to secrete interleukin-6 and interleukin-8. We propose that the soluble MD-2.LPS complex plays a crucial role in the LPS response by activating epithelial and other TLR4(+)/MD-2(-) cells in the inflammatory microenvironment.  相似文献   

13.
16-Phyllocladanol is diterpene isolated form the heartwood of Cryptomeria japonica. We demonstrate that the effect of 16-phyllocladanol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were exposed to 16-phyllocladanol alone, or in combination with LPS and thereafter co-cultured with naïve T cells. The expression levels of CD83 and HLA-DR on LPS-primed DC were enhanced by 16-phyllocladanol. 16-Phyllocladanol dose-dependently augmented the T cell stimulatory capacity in an allo MLR to LPS-primed DC and the production of IL-12p70 by LPS-primed DC. The cytokine production by 16-phyllocladanol-primed DC was not inhibited by anti-TLR2 and 4 mAbs. IFN-γ secretion from naïve T cells co-cultured with DC differentiated with LPS was also augmented by 16-phyllocladanol. These results suggest that the enhancement of Th1 cells polarization to LPS-primed DC induced by 16-phyllocladanol via the activation of IL-12p70 and independent on TLR2 or TLR4.  相似文献   

14.
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.  相似文献   

15.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

16.
Toll like receptor 4 (TLR4) is an important pattern recognition receptor with the ability to drive potent innate immune responses and also to modulate adaptive immune responses needed for long term protection. Activation of TLR4 by its ligands is mediated by engagement of the adapter proteins MyD88 (myeloid differentiation factor 88) and TRIF (Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta). Previously, we showed that TRIF, but not MyD88, plays an important role in allowing TLR4 agonists to adjuvant early T cell responses. In this study, we investigated the T cell priming events that are regulated specifically by the TRIF signaling branch of TLR4. We found that TRIF deficiency prevented the TLR4 agonist lipid A from enhancing T cell proliferation and survival in an adoptive transfer model of T cell priming. TRIF deficient DC showed defective maturation as evidenced by their failure to upregulate co-stimulatory molecules in response to lipid A stimulation. Importantly, TRIF alone caused CD86 and CD40 upregulation on splenic DC, but both TRIF and MyD88 were required for CD80 upregulation. The impairment of T cell adjuvant effects and defective DC maturation in TRIF lps/lps mice after TLR4 stimulation was mainly due to loss of type I IFN production, indicating that type I interferons are central to TLR4''s adjuvant effects. These results are useful for the continued development of TLR4 based vaccine adjuvants that avoid inflammatory risks while retaining beneficial immune response.  相似文献   

17.
Immunogenic cell death induced by anticancer chemotherapy is characterized by a series of molecular hallmarks that include the exodus of high-mobility group box 1 protein (HMGB1) from dying cells. HMGB1 is a nuclear nonhistone chromatin-binding protein. It is secreted at the late stages of cellular demise and engages Toll-like receptor4 (TLR4) on dendritic cells (DCs) to accelerate the processing of phagocytic cargo in the DC and to facilitate antigen presentation by DC to T cells. The absence of HMGB1 expression by dying tumor cells exposed to anthracyclines or oxaliplatin compromises DC-dependent T-cell priming by tumor-associated antigens. Here, we show that transplantable tumors exhibiting weak expression of nuclear HMGB1 respond to chemotherapy more effectively if the treatment is combined with the local or systemic administration of a highly purified and physiochemically defined and standardized lipopolysaccharide solution, which acts as a high-potency and exclusive TLR4 agonist, called Dendrophilin (DEN). The synergistic antitumor effects mediated by the combination of chemotherapy and immunotherapy relied upon the presence of the MyD88 (myeloid differentiation primary response gene) adapter of TLR4 (but not that of the TIR-domain-containing adapter-inducing interferon-β adapter), in line with the well-characterized action of DEN on the MyD88 signaling pathway. DEN and anthracyclines synergized to induce intratumoral accumulation of interferon-γ-producing CD4+ and CD8+ T lymphocytes. Moreover, DEN could restore the immunogenicity of dying tumor cells from which HMGB1 had been depleted by RNA interference. These findings underscore the potential clinical utility of combination regimens involving immunogenic chemotherapy and certain TLR4 agonists in advanced HMGB1-deficient cancers.  相似文献   

18.
19.
20.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号