首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although insulin receptor (InsR) and type I insulin-like growth factor receptor (IGF-IR) elicit different physiological effects in their target tissues, their signaling capabilities are similar to a large extent. In the present work, we investigated the potential of the third member of the family, insulin receptor-related receptor (IRR), to associate with known interaction partners of the InsR and the IGF-I receptor in a yeast two-hybrid assay. Using the intracellular part of the IRR we found no association with any of the tested signaling molecules. Phosphotyrosine detection revealed a lack in the constitutive activation of the IRR described for analogous constructs of the two other members of the family. Replacement of the kinase domain of the IGF-IR or its C-terminal lobe alone into the IRR caused a complete restoration of the tyrosine phosphorylation of the IRR. The reestablishment of autophosphorylation was paralleled by restoration of interaction with a specific range of signaling molecules.  相似文献   

2.
The effect of porins purified from Salmonella typhimurium, Pasteurella haemolytica and Haemophilus influenzae on induction of tyrosine phosphorylation in THP-1 cells and C3H/HeJ macrophage was investigated. Incubation of porins at concentration of 1.0-5.0 microg ml(-1) with either THP-1 or macrophage from C3H/HeJ mice resulted in tyrosine phosphorylation of specific host cell proteins. After porin stimulation a pattern of tyrosine phosphorylated proteins appeared in the soluble cytoplasmic fraction, in the membrane fraction and in the insoluble protein fraction. The observed effects were dependent on the porin concentrations; they reached a maximal expression at 3 min and declined at 60 min. Porin and lipopolysaccharide treatments induce a similar phosphorylation pattern in all of the three cellular fractions studied. A difference can be observed in the cytoplasmic fraction bands of 50-60 kDa, which are more evident after treatment with lipopolysaccharide, and in the insoluble fraction band of 80 kDa and the cytoplasmic fraction band of 250 kDa, which are more evident after treatment with porins. The events of tyrosine protein phosphorylation were present in macrophage from lipopolysaccaride-hyporesponsive C3H/HeJ mice stimulated with porins, while they were markedly reduced when the cells were stimulated with lipopolysaccharide. Staurosporine, genistein and cytochalasin D induced in the three cellular fractions a different inhibition pattern of tyrosine protein phosphorylation in porin stimulated cells. Porins extracted from the three bacterial species investigated behave in a similar way as stimuli more or less potent; Hib porin seems to be the most powerful stimulator and, moreover, it specifically induces phosphorylation of a 55 kDa band.  相似文献   

3.
细胞因子受体的组成,结构功能及信号传导机制   总被引:4,自引:0,他引:4  
卢建 《生理科学进展》1995,26(4):305-311
细胞因子受体种类繁多,分属于不同受体超家族。活化受体的功能可分为:PTK型受体或其结合蛋白具有PTK活性、丝/苏氨酸蛋白激酶型受体以及与G蛋白耦联的受体等。不同受体与其配体结合后,通过对受体后信号传导成分的可逆的磷酸化反应传递信号,最终通过对其终端成分,如酶活力、基因表达、细胞骨架蛋白的功能、膜通透性等的调节,导致细胞的生物效应。  相似文献   

4.
IgE is critical in the pathogenesis of allergic disorders. In this report, we investigated the differential regulation of antigen-specific and by-stander IgE. Ovalbumin (OVA) immunization did not increase IgE producing cells in the spleen, but significantly enhanced the intracellular IgE content of all IgE+ cells. In contrast, OVA induced a significant increase of IgE+ cells in the draining lymph nodes (LN). Furthermore, OVA-specific IgE was detected only in the ex vivo cultures of the draining LN but not the spleen cells, while total IgE was increased in both cultures. These results indicated that antigen-specific IgE was mainly produced in the draining LN, while the spleen was a major source for by-stander IgE. Anti-IL-4, but not anti-IL-13, antibody blocked the expansion of IgE producing cells in the draining LN as well as systemic OVA-specific and total IgE levels, indicating IL-4 was important in both antigen-specific IgE generation and total IgE upregulation.  相似文献   

5.
Abstract: A clonal cell line stably expressing trkB (TrkB/PC12) was established from rat pheochromocytoma PC12 cells. Brain-derived neurotrophic factor (BDNF), as well as nerve growth factor (NGF), stimulates neurite outgrowth in TrkB/PC12 cells. However, the morphology of BDNF-differentiated cells was clearly different from NGF-differentiated cells. BDNF treatment brought about longer and thicker neurites and induced a flattened soma and an increase in somatic size. This is not explained enough by the quantitative difference in the strength between TrkA and TrkB stimulation, because the level of BDNF-stimulated tyrosine phosphorylation of TrkB was similar to that of TrkA stimulated with NGF in PC12/TrkB cells. There was no difference in major tyrosine phosphorylated proteins induced by NGF and BDNF. Signal proteins such as phosphatidylinositol 3-kinase, phospholipase C-γ1, Shc, and mitogen-activated protein kinase seem to be involved in both TrkA- and TrkB-mediated signaling pathways. However, a tyrosine-phosphorylated 38-kDa protein (pp38) was detected in anti-pan-Trk immunoprecipitation only after NGF stimulation. Immunoprecipitation using three distinct anti-pan-Trk antibodies suggests that pp38 is not a fragment of TrkA. These data indicate that TrkA has a unique signal transduction pathway that is not stimulated through TrkB in TrkB/PC12 cells and suggest distinct functions among neurotrophin receptors.  相似文献   

6.
Mithoe SC  Menke FL 《Phytochemistry》2011,72(10):997-1006
Plants and animal cells use intricate signaling pathways to respond to a diverse array of stimuli. These stimuli include signals from environment, such as biotic and abiotic stress signals, as well as cell-to-cell signaling required for pattern formation during development. The transduction of the signal often relies on the post-translational modification (PTM) of proteins. Protein phosphorylation in eukaryotic cells is considered to be a central mechanism for regulation and cellular signaling. The classic view is that phosphorylation of serine (Ser) and threonine (Thr) residues is more abundant, whereas tyrosine (Tyr) phosphorylation is less frequent. This review provides an overview of the progress in the plant phosphoproteomics field and how this progress has lead to a re-evaluation of the relative contribution of tyrosine phosphorylation to the plant phosphoproteome. In relation to this appreciated contribution of tyrosine phosphorylation we also discuss some of the recent progress on the role of tyrosine phosphorylation in plant signal transduction.  相似文献   

7.
Within the B-cell antigen receptor (BCR), heterodimers of Igalpha/Igbeta couple the receptor to intracellular signaling pathways. In the resting state, Igalpha associates with Src-family tyrosine kinases (SFTKs) which contain some basal activity. Upon engagement of the receptor, the SFTKs phosphorylate tyrosine residues in the BCR that recruit and activate the tyrosine kinase Syk, initiating signaling pathways. To test the hypothesis that disrupting the association between the resting receptor and the SFTKs would attenuate both basal and induced receptor activities, we expressed non-phosphorylatable membrane-targeted analogs of Igalpha (Igalpha/M) or Igbeta (Igbeta/M) in B lymphocytes. Both Igalpha/M and Igbeta/M inhibited BCR-induced calcium mobilization, but only Igalpha/M was able to diminish tyrosine phosphorylation. In an immature B-cell line, Igalpha/M attenuated both receptor-induced and basal apoptosis. Taken together, these data demonstrate the importance of the resting receptor complex and suggest therapeutic strategies for regulating receptor-mediated functions.  相似文献   

8.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

9.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs, via tyrosine phosphorylation at specific residues. We recently reported that FAK Tyr-407 phosphorylation negatively regulates the enzymatic and biological activities of FAK, unlike phosphorylation of other tyrosine residues. In this study, we further investigated the effect of FAK Tyr-407 phosphorylation on cell transformation. We found that FAK Tyr-407 phosphorylation was lower in H-Ras transformed NIH3T3 and K-Ras transformed rat-2 fibroblasts than in the respective untransformed control cells. Consistently, FAK Tyr-407 phosphorylation was decreased in parallel with cell transformation in H-Ras-inducible NIH3T3 cells and increased during trichostatin A-induced detransformation of both K-Ras transformed rat-2 fibroblasts and H-Ras transformed NIH3T3 cells. In addition, overexpression of a phosphorylation-mimicking FAK Tyr-407 mutant inhibited morphological transformation of H-Ras-inducible NIH3T3 cells and inhibited invasion activity and anchorage-independent growth of H-Ras-transformed NIH3T3 cells. Taken together, these data strongly suggest that FAK Tyr-407 phosphorylation negatively regulates transformation of fibroblasts.  相似文献   

10.
Previously, we demonstrated that the γC subunit of type I IL-4 receptor was required for robust tyrosine phosphorylation of the downstream adapter protein, IRS-2, correlating with the expression of genes (ArgI, Retnla, and Chi3l3) characteristic of alternatively activated macrophages. We located an I4R-like motif (IRS-2 docking sequence) in the γC cytoplasmic domain but not in the IL-13Rα1. Thus, we predicted that the γC tail directed enhanced IRS-2 phosphorylation. To test this, IL-4 signaling responses were examined in a mutant of the key I4R motif tyrosine residue (Y325F) and different γC truncation mutants (γ285, γ308, γ318, γ323, and γFULL LENGTH (FL)) co-expressed in L-cells or CHO cells with wild-type (WT) IL-4Rα. Surprisingly, IRS-1 phosphorylation was not diminished in Y325F L-cell mutants suggesting Tyr-325 was not required for the robust insulin receptor substrate response. IRS-2, STAT6, and JAK3 phosphorylation was observed in CHO cells expressing γ323 and γFL but not in γ318 and γ285 mutants. In addition, when CHO cells expressed γ318, γ323, or γFL with IL-2Rβ, IL-2 induced phospho-STAT5 only in the γ323 and γFL clones. Our data suggest that a smaller (5 amino acid) interval than previously determined is necessary for JAK3 activation/γC-mediated signaling in response to IL-4 and IL-2. Chimeric receptor chains of the γC tail fused to the IL-13Rα1 extracellular and transmembrane domain did not elicit robust IRS-2 phosphorylation in response to IL-13 suggesting that the extracellular/transmembrane domains of the IL-4/IL-13 receptor, not the cytoplasmic domains, control signaling efficiency. Understanding this pathway fully will lead to rational drug design for allergic disease.  相似文献   

11.
    
In the moss Ceratodon purpureus a phytochrome gene encodes a phytochrome type (PhyCer) which has a C-terminal domain homologous to the catalytic domain of eukaryotic protein kinases (PKs). PhyCer exhibits sequence conservation to serine/ threonine as well to tyrosine kinases. Since PhyCer is expressed very weakly in moss cells, to investigate the proposed PK activity of PhyCer, we overexpressed PhyCer transiently in fibroblast cells. For this purpose we made a chimeric receptor, EC-R, which consists of the extracellular, the membrane-spanning and the juxtamembrane domains of the human epidermal growth-factor receptor (EGF-R) linked to the PK catalytic domain of PhyCer (CerKin). The expression of EC-R in transiently transfected cells was confirmed with antibodies directed against the extracellular domain of EGF-R or against CerKin. Both EGF-R and EC-R were immunoprecipitated from lysates of overexpressing cells with antibodies against the extracellular domain of EGF-R. Phosphorylation experiments were performed with the immunoprecipitates and the phosphorylation products were subjected to phosphoamino acid analysis. Phosphorylation products specifically obtained with EC-R-transfected cells exhibit phosphorylation on serine and threonine residues. In EC-R transfected cells the endogenous EGF-R showed enhanced phosphorylation of serine and threonine residues compared to EGF-R immuno-precipitated from control cells. Although CerKin is closest to the catalytic domain of a protein tyrosine kinase from Dictyostelium discoideum, EC-R does not appear to phosphorylate tyrosine residues in vitro. From our data we conclude that PhyCer carries an active PK domain capable of phosphorylating serine and threonine residues.Abbreviations CerKin protein kinase catalytic domain of PhyCer - EC-R chimeric receptor consisting of the extracellular, the membrane spanning and the juxtamembrane domains of the human epidermal growth factor receptor (EGF-R) linked to the protein kinase catalytic domain of PhyCer - EGF-R epidermal growth factor receptor - mAb monoclonal antibody - PhyCer phytochrome gene in Ceratodon encoding a phytochrome type which has a C-terminal domain homologous to the catalytic domain of eucaryotic protein kinases - PK protein kinase - PVDF polyvinyl difluoride - Ser serine - Thr threonine - Tyr tyrosineDr. Patricia Algarra was supported by the Alexander von Humboldt Foundation, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.  相似文献   

12.
We have previously demonstrated that the constitutively active Q646C mutant of the ErbB4 receptor tyrosine kinase inhibits colony formation by human prostate tumor cell lines. Here we use ErbB4 mutants to identify ErbB4 functions critical for inhibiting colony formation. A derivative of ErbB4 Q646 that lacks kinase activity fails to inhibit colony formation by prostate tumor cells. Likewise, an ErbB4 Q646C mutant in the context of the CT-b splicing isoform fails to inhibit colony formation. Mutation of tyrosine 1056 to phenylalanine abrogates inhibition of colony formation whereas an ErbB4 mutant that lacks all of the putative sites of tyrosine phosphorylation except for tyrosine 1056 still inhibits colony formation. Given that tyrosine 1056 is missing in the CT-b isoform, these results suggest that phosphorylation of tyrosine 1056 is critical for function. Indeed, an ErbB4 mutant that lacks kinase activity but has a glutamate phosphomimic residue substituted for tyrosine 1056 inhibits colony formation. Finally, 1-dimensional phosphopeptide mapping indicates that ErbB4 Q646C is phosphorylated on tyrosine 1056. These data suggest that phosphorylation of ErbB4 tyrosine 1056 is critical for coupling ErbB4 to prostate tumor suppression.  相似文献   

13.
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.  相似文献   

14.
15.
The SH2/SH3 adapter proteins of the Crk family are potent signal transducers after receptor tyrosine kinase stimulation with insulin or IGF-1. We have employed a yeast two-hybrid approach and mutational analysis to dissect the capabilities of the insulin receptor and the IGF-I receptor to directly associate with Crk isoforms. Insulin receptor stably recruits full length Crk by association with its SH2 domain in an auto-phosphorylation dependent manner. In contrast, interaction of the IGF-I receptor with the Crk-IISH2 domain was only detectable when Crk-II was truncated in its C-terminal part, indicating the transient nature of this interaction. From these data it can be concluded that members of the insulin receptor family activate Crk proteins in a differential manner.  相似文献   

16.
IL-12 activates STAT4 by inducing tyrosine phosphorylation, homo-dimerization, and nuclear translocation in NK cells and thereby stimulates proliferation and activation of these cells. The pore-forming protein perforin is a key effector protein for NK cell- and cytotoxic T lymphocyte-mediated cytolysis. Here we demonstrate that IL-12 induces the expression of the perforin gene in human NK cell line, NKL. Electrophoretic mobility shift assays using a probe containing two putative STAT-binding sequences located at -1085 and -1059 in the human perforin gene showed that STAT4 or STAT5 activated by IL-12 or IL-2, respectively, in NKL cells binds this region. Further analyses using various probes with or without mutated STAT-binding sequences showed that, although either of the two tandem STAT-binding sequences binds STAT4 weakly, the presence of both is required for significant binding of activated STAT4 and for formation of the STAT4-DNA-binding complex with lower electrophoretic mobility. Furthermore, mutation of either of the tandem STAT-binding sequences abolished the IL-12-induced activation of the perforin gene promoter in reporter gene assays. These results indicate that the IL-12-induced expression of the perforin gene in NK cells is directly regulated by STAT4, which binds, most likely as a homo-tetramer, to the tandem STAT-binding sequences in the perforin gene promoter.  相似文献   

17.
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. Our previous studies also revealed that STAP-2 binds to MyD88 and IKK-alpha/beta, and modulates NF-kappaB signaling in macrophages. In the present study, we examined physiological roles of the interaction between STAP-2 and c-Fms in Raw 264.7 macrophage cells. Our immunoprecipitation has revealed that c-Fms directly interacts with the PH domain of STAP-2 independently on M-CSF-stimulation. Ectopic expression of STAP-2 markedly suppressed M-CSF-induced tyrosine phosphorylation of c-Fms as well as activation of Akt and extracellular signal regulated kinase. In addition, Raw 264.7 cells over-expressing STAP-2 showed impaired migration in response to M-CSF and wound-healing process. Taken together, our findings demonstrate that STAP-2 directly binds to c-Fms and interferes with the PI3K signaling, which leads to macrophage motility, in Raw 264.7 cells.  相似文献   

18.
19.
20.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号