首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the bound peptide in alloreactive T-cell recognition is controversial, ranging from peptide-independent to peptide-specific recognition of alloreactive T-cells. The aim of this study is to find the evidence that there exist peptide/MHC complex (pMHC)-specific CTLs among alloreactive T cells generated with long-term mixed lymphocytes culture (LTMLC). A single pMHC was manipulated by loading the TAP-defective, HLA-A2 expressing T2 cells with a viral peptide (LMP2A426-434) or a self-peptide (Tyr369-377). The PBLs samples from 4 HLA-A2 positive (HLA-A2+ve) and 4 HLA-A2 negative (HLA-A2-ve) donors were included in this study. The HLA-A2+ve PBL co-cultured with the LMP2A426-434pulsed T2 (T2/LMP) stands for the nominal T-cell response to a viral antigen, and the HLA-A2-ve PBLs co-cultured with the Tyr369-377 pulsed T2 (T2/Tyr) for alloreactive T-cell response to an allogeneic antigen.The specificity of the expanded CTLs after the LTMLC was detected by their specific cytotoxicity and binding ability to specific pMHC-tetramer. An HLA-A2 restricted, HIV peptide (Gag77-85) was included for control. The cultural bulk of HLA-A2+ve PBLs with the T2/LMP showed an elevated specific cytotoxicity against the T2/LMP compared to that against the T2/HIV (26.52%±3.72% vs 7.01%±0.87%, P<0.001), and an increased frequency of binding to LMP-tetramer compared to that binding to HIV-tetramer (0.98%±0.33% vs 0.05%±0.01%, P=0.0014). The cultural bulk of HLA-A2-ve PBLs with the T2/Tyr showed a more active cytotoxicity against the T2/Tyr than that against T2/HIV (28.07%±2.58% vs 6.87%±1.01%,P<0.001), and a higher frequency of binding to the Tyr-tetramer than that binding to the HIV-tetramer (0.88%±0.3% vs 0.06%±0.03%, P=0.0018). Our results indicate that the LTMLC is able to expand the viral antigen-specific CTLs as well as allogeneic antigen-specific CTLs. A relatively large proportion of alloreactive CTLs should be pMHC-specific, i.e., the specificity of the alloreactive lines depends on both the bound peptide and the allotype of MHC. Our observations support the hypothesis that the cumularive effect of T cells specific to each peptide epitope could account for the strength and diversity of the alloresponse. The method using manipulated pMHC and the LTMLC to generate pMHC-specific, alloreactive CTLs is of potential importance for adoptive T-cell immunotherapy.  相似文献   

2.
The role of the bound peptide in alloreactive T-cell recognition is controversial, ranging from pep-tide-independent to peptide-specific recognition of alloreactive T-cells. The aim of this study is to find the evidence that there exist peptide/MHC complex (pMHC)-specific CTLs among alloreactive T cells generated with long-term mixed lymphocytes culture (LTMLC). A single pMHC was manipulated by loading the TAP-defective, HLA-A2 expressing T2 cells with a viral peptide (LMP2A426-434) or a self-peptide (Tyr369-377). The PBLs samples from 4 HLA-A2 positive (HLA-A2 ve) and 4 HLA-A2 negative (HLA-A2-ve) donors were included in this study. The HLA-A2 ve PBL co-cultured with the LMP2A426-434 pulsed T2 (T2/LMP) stands for the nominal T-cell response to a viral antigen, and the HLA-A2-ve PBLs co-cultured with the Tyr369-377 pulsed T2 (T2/Tyr) for alloreactive T-cell response to an allogeneic antigen. The specificity of the expanded CTLs after the LTMLC was detected by their specific cytotoxicity and binding ability to specific pMHC-tetramer. An HLA-A2 restricted, HIV peptide (Gag77-85)was included for control. The cultural bulk of HLA-A2 ve PBLs with the T2/LMP showed an elevated specific cytotoxicity against the T2/LMP compared to that against the T2/HIV (26.52%±3.72% vs 7.01%±0.87%, P<0.001), and an increased frequency of binding to LMP-tetramer compared to that binding to HIV-tetramer (0.98%±0.33% vs 0.05%±0.01%, P=0.0014). The cultural bulk of HLA-A2-ve PBLs with the T2/Tyr showed a more active cytotoxicity against the T2/Tyr than that against T2/HIV (28.07%±2.58% vs 6.87%±0.01 %, P<0.001), and a higher frequency of binding to the Tyr-tetramer than that binding to the HIV-tetramer (0.88%±0.3% vs 0.06%±0.03%, P=0.0018). Our results indicate that the LTMLC is able to expand the viral antigen-specific CTLs as well as allogeneic antigen-specific CTLs. A relatively large proportion of alloreactive CTLs should be pMHC-specific, i.e., the specificity of the alloreactive lines depends on both the bound peptide and the allotype of MHC. Our observations support the hypothesis that the cumulative effect of T cells specific to each peptide epitope could account for the strength and diversity of the alloresponse. The method using manipulated pMHC and the LTMLC to generate pMHC-specific, alloreactive CTLs is of potential importance for adoptive T-cell immunotherapy.  相似文献   

3.
The oncofetal Ag immature laminin receptor (OFA-iLR) is a potential target molecule for immunotherapeutic studies in several tumor entities, including hematological malignancies. In the present study, we characterize two HLA-A*0201-presented epitopes eliciting strong OFA-iLR peptide-specific human cytotoxic T cell (CTLs) responses in vitro. Both allogeneic HLA-A*0201-matched and autologous CTLs recognized and killed endogenously OFA-iLR-expressing tumor cell lines and primary malignant cells from patients with hemopoietic malignancies in an MHC-restricted fashion but spared nonmalignant hemopoietic cells. Spontaneous OFA-iLR peptide-specific T cell reactivity was detectable in a significant proportion of leukemia patients. Interestingly, in patients with chronic lymphocytic leukemia and multiple myeloma but not in those with acute myeloid leukemia, significant frequencies of OFA peptide-specific CTLs could be detected in an early stage of disease but disappeared in patients with progressive disease. The identification of OFA-iLR-derived peptide epitopes provides a basis for tumor immunological studies and therapeutic vaccination strategies in patients with OFA-iLR-expressing malignancies.  相似文献   

4.
We herein report the identification of an HLA-A2 supertype-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2), which is known to be a diagnostic marker and a potential therapeutic target for renal cell carcinoma. Among several candidate peptides predicted by the HLA-binding prediction algorithm, HIG2-9-4 peptide (VLNLYLLGV) was able to effectively induce peptide-specific cytotoxic T lymphocytes (CTLs). The established HIG2-9-4 peptide-specific CTL clone produced interferon-γ (IFN-γ) in response to HIG2-9-4 peptide-pulsed HLA-A*02:01-positive cells, as well as to cells in which HLA-A*02:01 and HIG2 were exogenously introduced. Moreover, the HIG2-9-4 peptide-specific CTL clone exerted cytotoxic activity against HIG2-expressing HLA-A*02:01-positive renal cancer cells, thus suggesting that the HIG2-9-4 peptide is naturally presented on HLA-A*02:01 of HIG-2-expressing cancer cells and is recognized by CTLs. Furthermore, we found that the HIG2-9-4 peptide could also induce CTLs under HLA-A*02:06 restriction. Taken together, these findings indicate that the HIG2-9-4 peptide is a novel HLA-A2 supertype-restricted epitope peptide that could be useful for peptide-based immunotherapy against cancer cells with HIG2 expression.  相似文献   

5.
Raising tumor-specific allorestricted T cells in vitro for adoptive transfusion is expected to circumvent host tumor tolerance. However, it has been assumed that alloreactive T cell clones activated in vitro ranges from peptide-specific with high avidity to peptide-degenerate with low avidity. In this study, we examined the peptide specificity and cross-reactivity of T cell responses in vitro to an allogeneic epitope and a nominal epitope with a modified co-culture of lymphocytes and autologous monocytes. After binding to the monocyte via the interaction of its Fc part and the cell surface IgG Fc receptor type I (FcγRI), a fusion protein consisting of the extracellular domains of HLA-A2 molecule and the Fc region of IgG1 (the dimer) introduced a single epitope into the co-culture. The dimer-coated monocytes stimulated the proliferation of autologous CD8+ T cells after co-culturing. The CD8+ T cell responses were self-HLA-restricted for HLA-A2-positive (HLA-A2+ve) samples and allo-HLA-restricted for HLA-A2-negative (HLA-A2-ve) samples, since the co-cultural bulks stained with HLA-A2 tetramers, human interferon-gamma (IFN-γ) production in response to T cell receptor (TCR) ligands, and cytotoxicity against a panel of target cells exhibited peptide-specific properties. Two HLA-A2-restricted peptides with sequence homology were included, allowing the comparison of cross-reactivity between allo-antigen- and nominal antigen-induced CD8+ T cell responses. Interestingly, the allo- and self-HLA-restricted CD8+ T cell responses were similar in the peptide cross-reactivity, although the allorestricted T cell response seemed, overall, more intensive and had higher binding affinity to specific tetramer. Our findings indicated the alloreactive T cells raised by the co-culture in vitro were as peptide specific and cross-reactive as the self-HLA-restricted ones.  相似文献   

6.
7.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

8.
Soluble forms of human MHC class I HLA-A2 were produced in which the peptide binding groove was uniformly occupied by a single tumor or viral-derived peptides attached via a covalent flexible peptide linker to the N terminus of a single-chain -2-microglobulin-HLA-A2 heavy chain fusion protein. A tetravalent version of this molecule with various peptides was found to be functional. It could stimulate T cells specifically as well as bind them with high avidity. The covalently linked single chain peptide-HLA-A2 construct was next fused at its C-terminal end to a scFv antibody fragment derived from the variable domains of an anti-IL-2R subunit-specific humanized antibody, anti-Tac. The scFv–MHC fusion was thus encoded by a single gene and produced in E. coli as a single polypeptide chain. Binding studies revealed its ability to decorate Ag-positive human tumor cells with covalent peptide single-chain HLA-A2 (scHLA-A2) molecules in a manner that was entirely dependent upon the specificity of the targeting Antibody fragment. Most importantly, the covalent scHLA-A2 molecule, when bound to the target tumor cells, could induce efficient and specific HLA-A2-restricted, peptide-specific CTL-mediated lysis. These results demonstrate the ability to generate soluble, stable, and functional single-chain HLA-A2 molecules with covalently linked peptides, which when fused to targeting antibodies, potentiate CTL killing. This new approach may open the way for the development of new immunotherapeutic strategies based on antibody targeting of natural cognate MHC ligands and CTL-based cytotoxic mechanisms.Kfir Oved and Avital Lev contributed equally to this work  相似文献   

9.
To investigate the effects of anchor substitutions in SYT-SSX junction peptide, an HLA-A24 anchor residue (position 9) of the SYT-SSX B peptide (GYDQIMPKK) was substituted to more favorable residues according to the HLA-A24-binding motif. Among four substitutes constructed, a substitute with isoleucine (termed K9I peptide) most apparently enhanced the affinity for HLA-A24 molecule. Subsequent in vitro CTL induction analysis using PBMCs of 15 HLA-A24(+) synovial sarcoma patients revealed that the original B peptide allowed to induce synovial sarcoma-specific CTLs from 7 patients (47%), whereas such CTLs were inducible from 12 patients (80%) with K9I peptide. Moreover, the extent of cytotoxicity against HLA-A24(+) synovial sarcoma cell lines was higher in K9I peptide-induced CTLs than B peptide-induced CTLs. Influence of anchor substitution on peptide/TCR interaction was evaluated by cytotoxicity assays against autologous cells and tetramer analysis. CTLs induced from a synovial sarcoma patient using K9I peptide did not lyse autologous PHA blasts or EBV-infected B cells. In vitro stimulations of PBMCs from 5 HLA-A24(+) synovial sarcoma patients with K9I peptide increased the frequency of T cells reacting with both HLA-A24/K9I peptide tetramer and HLA-A24/B peptide tetramer. In contrast, the frequency of T cells reacting with HLA/HIV-derived peptide tetramer remained low. These findings support the validity in design of anchor residue substitution in SYT-SSX fusion gene-derived peptide, and provide a potential clue to the current stagnation in vaccination trials of fusion gene-derived natural junction peptides.  相似文献   

10.
Liu W  Zhai M  Wu Z  Qi Y  Wu Y  Dai C  Sun M  Li L  Gao Y 《Amino acids》2012,42(6):2257-2265
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9?V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.  相似文献   

11.
SART3-derived peptides applicable to prostate cancer patients with HLA-A3 supertype alleles were identified in order to expand the possibility of an anti-cancer vaccine, because the peptide vaccine candidates receiving the most attention thus far have been the HLA-A2 and HLA-A24 alleles. Twenty-nine SART3-derived peptides that were prepared based on the binding motif to the HLA-A3 supertype alleles (HLA-A11, -A31, and -A33) were first screened for their recognizability by immunoglobulin G (IgG) of prostate cancer patients and subsequently for the potential to induce peptide-specific cytotoxic T lymphocytes (CTLs) from HLA-A3 supertype+ prostate cancer patients. As a result, five SART3 peptides were frequently recognized by IgG, and two of them—SART3 511–519 and SART3 734–742—efficiently induced peptide-specific and cancer-reactive CTLs. Their cytotoxicity toward prostate cancer cells was ascribed to peptide-specific and CD8+ T cells. These results indicate that these two SART3 peptides could be promising candidates for peptide-based immunotherapy for HLA-A3 supertype+ prostate cancer patients. Grant sponsor This study was supported in part by KAKENHI (Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan) (no. 12213134 to K. Itoh, and no. 18591449 to M. Harada), Research Center of Innovative Cancer Therapy of 21st Century COE Program for Medical Science to K. Itoh, and the Ministry of Health, Labor and Welfare, Japan (15–17 to M. Harada).  相似文献   

12.
Because cytotoxic T lymphocytes (CTLs) play an important role in the specific immunotherapy of hepatitis C virus (HCV) infection, a series of CTL epitopes has been defined from HCV genotype 1a or 1b protein. Here, we attempted to identify HCV2a-derived epitopes that are capable of inducing HLA-A2-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells (PBMCs) of HLA-A2+ HCV2ainfected patients or healthy donors were stimulated in vitro with each of the HCV2a-derived peptides, which were prepared based on the HLA-A2-binding motif, and their peptide-specific and HLA-A2-restricted cytotoxicities were examined. The HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides were found to efficiently induce peptide-specific CTLs from the PBMCs of HLA-A2+ HCV2ainfected patients. Cytotoxicity was mainly mediated by CD8+ T cells in a HLA class I-restricted manner. These results indicate that the HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides might be applicable for peptide-based immunotherapy of HLA-A2+ HCV2a-infected patients.  相似文献   

13.
Osteosarcoma is a rare but highly malignant tumor occurring most frequently in adolescents. The prognosis of non-responders to chemotherapy is still poor, and new treatment modalities are needed. To develop peptide-based immunotherapy, we previously identified autologous cytotoxic T lymphocyte-defined osteosarcoma antigen papillomavirus binding factor (PBF) in the context of HLA-B55 and the cytotoxic T lymphocyte epitope (PBF A2.2) presented by HLA-A2. PBF and HLA class I are expressed in ∼90 and 70% of various sarcomas, respectively. However, the expression status of peptide PBF A2.2 presented by HLA-A2 on osteosarcoma cells has remained unknown because it is difficult to generate a specific probe that reacts with the HLA·peptide complex. For detection and qualification of the HLA-A*02:01·PBF A2.2 peptide complex on osteosarcoma cells, we tried to isolate a single chain variable fragment (scFv) antibody directed to the HLA-*A0201·PBF A2.2 complex using a naïve scFv phage display library. As a result, scFv clone D12 with high affinity (KD = 1.53 × 10−9 m) was isolated. D12 could react with PBF A2.2 peptide-pulsed T2 cells and HLA-A2+PBF+ osteosarcoma cell lines and simultaneously demonstrated that the HLA·peptide complex was expressed on osteosarcoma cells. In conclusion, scFv clone D12 might be useful to select candidate patients for PBF A2.2 peptide-based immunotherapy and develop antibody-based immunotherapy.  相似文献   

14.
Major histocompatibility (MHC) class I tetramers are used in the quantitative analysis of epitope peptide-specific CD8+ T-cells. An MHC class I tetramer was composed of 4 MHC class I complexes and a fluorescently labeled streptavidin (SA) molecule. Each MHC class I complex consists of an MHC heavy chain, a beta(2)-microglobulin (beta(2)m) molecule and a synthetic epitope peptide. In most previous studies, an MHC class I complex was formed in the refolding buffer with an expressed MHC heavy chain molecule and beta(2)m, respectively. This procedure inevitably resulted in the disadvantages of forming unwanted multimers and self-refolding products, and the purification of each kind of monomer was time-consuming. In the present study, the genes of a human/murine chimeric MHC heavy chain (HLA-A2 alpha1, HLA-A2 alpha2 and MHC-H2D alpha3) and beta(2)m were tandem-cloned into plasmid pET17b and expressed as a fusion protein. The recombinant fusion protein was refolded with each of the three HLA-A2 restricted peptides (HBc18-27 FLPSDFFPSI, HBx52-60 HLSLRGLPV, and HBx92-100 VLHKRTLGL) and thus three chimeric MHC class I complexes were obtained. Biotinylation was performed, and its level of efficiency was observed via a band-shift assay in non-reducing polyacrylamide gel electrophoresis (PAGE). Such chimeric MHC class I tetramers showed a sensitive binding activity in monitoring HLA/A2 restrictive cytotoxic T lymphocytes (CTLs) in immunized HLA/A*0201 transgenic mice.  相似文献   

15.
We have previously reported that 90K/Mac-2 binding protein (M2BP) was highly expressed in lung cancer and that M2BP-specific immunity was observed in many of cancer patients. In this study, we analyzed the ability of 11 M2BP-derived oligopeptides with an HLA-A*0201-binding motif to induce M2BP-specific cytotoxic T lymphocytes (CTL) from peripheral blood lymphocytes of normal donors by in vitro stimulation. One of the CTLs that were induced using M2BP216-224 (RIDITLSSV) produced interferon-gamma in response to HLA-A2-positive T2 cells pulsed with the same peptide and lysed MDA-MB-231 cells expressing both M2BP and HLA-A2. The cytolytic activities were blocked by antibodies against HLA class I or CD8. These findings suggest that M2BP216-224 is naturally processed from the native M2BP in cancer cells and recognized by M2BP-specific CTLs in an HLA-A2 restriction. We first identified M2BP-derived CTL epitopes that may be useful as a target antigenic epitope in clinical immunotherapy of cancer.  相似文献   

16.
Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy.  相似文献   

17.
18.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

19.
alpha fetoprotein (AFP)-derived peptide epitopes can be recognized by human T cells in the context of MHC class I. We determined the identity of AFP-derived peptides, presented in the context of HLA-A*0201, that could be recognized by the human (h) T cell repertoire. We screened 74 peptides and identified 3 new AFP epitopes, hAFP(137-145), hAFP(158-166), and hAFP(325-334), in addition to the previously reported hAFP(542-550.) Each possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent class I binding assay. The peptides were stable for 2-4 h in an off-kinetics assay. Each peptide induced peptide-specific T cells in vitro from several normal HLA-A*0201 donors. Importantly, these hAFP peptide-specific T cells also were capable of recognizing HLA-A*0201(+)/AFP(+) tumor cells in both cytotoxicity assays and IFN-gamma enzyme-linked immunospot assays. The immunogenicity of each peptide was tested in vivo with HLA-A*0201/K(b)-transgenic mice. After immunization with each peptide emulsified in CFA, draining lymph node cells produced IFN-gamma on recognition of cells stably transfected with hAFP. Furthermore, AFP peptide-specific T cells could be identified in the spleens of mice immunized with dendritic cells transduced with an AFP-expressing adenovirus (AdVhAFP). Three of four AFP peptides could be identified by mass spectrometric analysis of surface peptides from an HLA-A*0201 human hepatocellular carcinoma (HCC) cell line. Thus, compelling immunological and physiochemical evidence is presented that at least four hAFP-derived epitopes are naturally processed and presented in the context of class I, are immunogenic, and represent potential targets for hepatocellular carcinoma immunotherapy.  相似文献   

20.
Fusions of patient-derived dendritic cells (DCs) and autologous tumor cells induce T-cell responses against autologous tumors in animal models and human clinical trials. These fusion cells require patient-derived tumor cells, which are not, however, always available. Here we fused autologous DCs from patients with hepatocellular carcinoma (HCC) to an allogeneic HCC cell line (HepG2). These fusion cells co-expressed tumor-associated antigens (TAAs) and DC-derived costimulatory and MHC molecules. Both CD4+ and CD8+ T cells were activated by the fusion cells. Cytotoxic T lymphocytes (CTLs) induced by the fusion cells were able to kill autologous HCC by HLA-A2- and/or HLA-A24-restricted mechanisms. CTL activity against shared TAAs indicates that the presence of alloantigens does not prevent the development of CTLs with activity against autologous HCC cells. These fusion cells may have applications in anti-tumor immunotherapy through cross-priming against shared tumor antigens and may provide a platform for adoptive immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号