首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the relative contributions of DC subsets in the development of protective immunity to Listeria monocytogenes we examined the relationship between maturation, bacterial burden, and T cell priming capacity of four well characterized subsets of splenic DC following infection with Lm. CD8α+, CD4+, and CD8αCD4 DC and the B220+ plasmacytoid DC (pDC) were compared for abundance and costimulatory molecule expression at 24, 48, and 72 h post i.v. infection. We further determined the bacterial burden associated with each DC subset and their relative capacities to prime CD8+ T cells at 24 hpi. The CD8α+ DC displayed the highest level of maturation, association with live bacteria, and T cell activation potential. Second, the CD4+ DC were also mature, yet were associated with fewer bacteria, and stimulated T cell proliferation, but not IFN-γ production. The CD8αCD4 DC showed a modest maturation response and were associated with a high number of bacteria, but failed to induce T cell proliferation ex vivo. pDC displayed a strong maturation response, but were not associated with detectable bacteria and also failed to stimulate T cell activation. Finally, we measured the cytokine responses in these subsets and determined that IL-12 was produced predominantly by the CD8+ DC, correlating with the ability of this subset DC to induce IFN-γ production in T cells. We conclude that Listeria-specific CD8+ T cell activation in the spleen is most effectively achieved by infection-induced maturation of the CD8α+ DC subset.  相似文献   

2.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

3.
Inducing long‐term protective memory CD8+ T‐cells is a desirable goal for vaccines against intracellular pathogens. However, the mechanisms of differentiation of CD8+ T‐cells into long‐lived memory cells capable of mediating protection of immunized hosts remain incompletely understood. We have developed an experimental system using mice immunized with wild type (WT) or mutants of the intracellular bacterium Listeria monocytogenes (Lm) that either do or do not develop protective memory CD8+ T‐cells. We previously reported that mice immunized with Lm lacking functional SecA2, an auxiliary secretion system of gram‐positive bacteria, did not differentiate functional memory CD8+ T‐cells that protected against a challenge infection with WT Lm. Herein we hypothesized that the p60 and NamA autolysins of Lm, which are major substrates of the SecA2 pathway, account for this phenotype. We generated Lm genetically deficient for genes encoding for the p60 and NamA proteins, ΔiapΔmurA Lm, and further characterized this mutant. Δp60ΔNamA Lm exhibited a strong filamentous phenotype, inefficiently colonized host tissues, and grew mostly outside cells. When Δp60ΔNamA Lm was made single unit, cell invasion was restored to WT levels during vaccination, yet induced memory T‐cells still did not protect immunized hosts against recall infection. Recruitment of blood phagocytes and antigen‐presenting cell activation was close to that of mice immunized with ΔActA Lm, which develop protective memory. However, key inflammatory factors involved in optimal T‐cell programming such as IL‐12 and type I IFN (IFN‐I) were lacking, suggesting that cytokine signals may largely account for the observed phenotype. Thus, altogether, these results establish that p60 and NamA secreted by Lm promote primary host cell invasion, the inflammatory response and the differentiation of functional memory CD8+ T‐cells, by preventing Lm filamentation during growth and subsequent triggering of innate sensing mechanisms.  相似文献   

4.
Cerebral malaria (CM) is the most severe complication of Plasmodium infection. Although inappropriate immune responses to Plasmodium falciparum are reported as the major causes of CM, the precise mechanisms for development remain unclear. IL-23 and IL-17 have critical roles in the onset of autoimmunity and inflammatory diseases triggered by microbial infections. Thus, we investigated the influence of IL-23 and IL-17 on experimental CM (ECM) using Plasmodium berghei ANKA infection of C57BL/6 mice. Both IL-23 deficient mice and wild-type (WT) mice developed ECM. IL-17 deficient mice also developed ECM, while IL-17 producing cells other than CD4+ T cells (Th17) were increased in WT mice that developed ECM. In conclusion, this study showed that IL-23 and IL-17 are not involved in ECM development.  相似文献   

5.
Long-term protection against Toxoplasma gondii is dependent on robust CD8+ T cell immunity. In the absence of this response, the host is unable to maintain chronicity, which results in recrudescence of infection and possible death. Factors needed for the persistence of protective CD8+ T cells against the parasite need to be evaluated. Previous studies from our laboratory have reported that synergism between γ chain cytokines like IL-7 and IL-15 is critical for the generation of CD8+ T cell response needed for protection during acute infection. In this study we report that the situation is different during the recall response where CD8+ T cell response is almost entirely dependent on IL-15, with IL-7 at best playing a minor role. In the absence of IL-15, CD8+ T cells fail to respond optimally to parasitic re-challenge and hosts are unable to control their replication, which leads to their death. Thus T. gondii infection may represent a unique situation where CD8+ T cell response during secondary challenge is primarily dependent on IL-15 with other γ chain cytokines having nominal effect. These findings provide important information regarding factors involved in the generation of protective immunity against T. gondii with strong implications in developing immunotherapeutic agents against the pathogen.  相似文献   

6.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

7.
Background: Interleukin (IL)-23, composed of p19 and p40 subunits, has diverse functions in regulating immune systems, enhancing cell-mediated immunity. In the present study, we investigated whether forced expression of the p19-linked p40 gene in murine mammary cancer cells (MA891) produced antitumor effects in vivo. Tumor growth of MA-891 cells expressing IL-23 (IL-23/MA891) in mice was retarded compared with parental and vector DNA-transduced tumors and survival of the mice inoculated with IL-23/MA-891 cells was prolonged. Expressions of the CD4+ T cells and CD8+ T cells were up-regulated not only in IL-23/MA-891 tumor specimens but also in spleen cells of mice inoculated with IL-23/MA-891 as compared with those of mice inoculated with parental or vector DNA-transduced tumors. Cytotoxic CD8+ T lymphocyte (CTL) activity of spleen cells from mice inoculated with IL-23/MA-891 was also significantly higher than the other two groups. Th1-type cytokines such as interferon-γ, TNF-α and IL-12p70 secreted from spleen cells of mice bearing IL-23/MA-891 tumors were increased while Th2-type cytokine IL-4 was negative regulated. Moreover, we have identified that the quantity of DC in spleen cells of mice bearing IL-23/MA-891 tumors was increased as compared with those mice bearing parental or vector DNA-transfected tumors.  相似文献   

8.
We analyzed the phenotype and function of bone marrow-derived dendritic cells (DCs) induced in vitro without using any serum during the late stage of cultivation. These ‘serum-free’ DCs (SF-DCs) possessed the ability to induce T cell proliferation as well as antibody responses, indicating that they were functional DCs. Surprisingly, the SF-DCs akin to semi-mature DCs in terms of both phenotypic and functional characteristics. The SF-DCs did not produce IL-12 but produced large amounts of IL-23 following lipopolysaccharide stimulation. The antigen-specific production of IL-17 by CD4+ T cells co-cultured with OVA-loaded SF-DCs was significantly higher than that with OVA-loaded conventional DCs. These results suggest that SF-DCs tend to produce IL-23 and can consequently induce the IL-17 producing CD4+ T cells. The semi-mature DC-like cells reported here will be useful vehicles for DC immunization and might contribute to studies on the possible involvement of semi-mature DCs in Th17 cell differentiation.  相似文献   

9.
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.  相似文献   

10.
Aim: The aim of this study was to develop an immunotherapy specific to a malignant glioma by examining the efficacy of glioma tumor-specific cytotoxic T lymphocytes (CTL) as well as the anti-tumor immunity by vaccination with dendritic cells (DC) engineered to express murine IL-12 using adenovirus-mediated gene transfer and pulsed with a GL26 glioma cell lysate (AdVIL-12/DC+GL26) was investigated. Experimentl: For measuring CTL activity, splenocytes were harvested from the mice immunized with AdVIL-12/DC+GL26 and restimulated with syngeneic GL26 for 7 days. The frequencies of antigen-specific cytokine-secreting T cell were determined with mIFN-γ ELISPOT. The cytotoxicity of CTL was assessed in a standard 51Cr-release assay. For the protective study in the subcutaneous tumor model, the mice were vaccinated subcutaneously (s.c) with 1×106 AdVIL-12/DC+GL26 in the right flanks on day −21, −14 and −7. On day 7, the mice were challenged with 1×106 GL26 tumor cells in the shaved left flank. For a protective study in the intracranial tumor model, the mice were vaccinated with 1×106 AdVIL-12/DC+GL26 s.c in the right flanks on days −21, −14 and −7. Fresh 1×104 GL26 cells were inoculated into the brain on day 0. To prove a therapeutic benefit in established tumors, subcutaneous or intracranial GL26 tumor-bearing mice were vaccinated s.c with 1×106 AdVIL-12/DC+GL26 on day 5, 12 and 19 after tumor cell inoculation. Results: Splenocytes from the mice vaccinated with the AdVIL-12/DC+GL26 showed enhanced induction of tumor-specific CTL and increased numbers of IFN-γ: secreting T cells by ELISPOT. Moreover, vaccination of AdVIL-12/DC+GL26 enhanced the induction of anti-tumor immunity in both the subcutaneous and intracranial tumor models. Conclusions: These preclinical model results suggest that DC engineered to express IL-12 and pulsed with a tumor lysate could be used in a possible immunotherapeutic strategy for malignant glioma.Korea Research Foundation Grant (KRF-2004-005-E00001).  相似文献   

11.
The contribution of cytokines IL-12, IL-18, IL-23, and IFN-γ, and Stat1 signaling molecules involved in Th1 responses associated with host resistance to Cryptosporidium parvum infection was investigated in adult IL-12p40−/−mice. Host resistance to C. parvum infection was assessed in different mouse strains lacking IL-12, IL-18, and IL-23 genes. We found that as in IL-12p40−/− mice (which lack both IL-12 and IL-23), IL-12p35−/− mice (which lack IL-12) and IL-18 deficient mice were also susceptible to infection with C. parvum. Varied levels of resistance were observed when mice were treated with cytokines like IL-18, IL-23 and IFN-γ. Mice treated with IL-12, as expected, were completely resistant to infection until day 5 post infection, and had significantly decreased (85%) parasite loads at peak infection (day 7), whereas rIL-23 had a lesser effect, decreasing parasite load by approximately 45%. Interestingly, IL-18 appears to play a significant role in initial immune response, even in the absence of IL-12, since treatment with IL-18 in IL-12p40−/− knockout mice decreased parasite load by approximately 70%. In addition, the establishment of C. parvum infection in mice lacking the Stat1 gene demonstrated the involvement of this pathway in resolution of infection. These observations indicate a strong requirement for Th1 response in the development of immunity to C. parvum in the adult IL-12p40−/− mice, information that will be essential to further investigate the immune responses during infections and in the development of potential vaccine candidates.  相似文献   

12.

Background

Cellular immunity is the main defense mechanism in paracoccidioidomycosis (PCM), the most important systemic mycosis in Latin America. Th1 immunity and IFN-γ activated macrophages are fundamental to immunoprotection that is antagonized by IL-10, an anti-inflammatory cytokine. Both in human and experimental PCM, several evidences indicate that the suppressive effect of IL-10 causes detrimental effects to infected hosts. Because direct studies have not been performed, this study was aimed to characterize the function of IL-10 in pulmonary PCM.

Methodology/Principal Findings

Wild type (WT) and IL-10−/− C57BL/6 mice were used to characterize the role of IL-10 in the innate and adaptive immunity against Paracoccidioides brasiliensis (Pb) infection. We verified that Pb-infected peritoneal macrophages from IL-10−/− mice presented higher phagocytic and fungicidal activities than WT macrophages, and these activities were associated with elevated production of IFN-γ, TNF-α, nitric oxide (NO) and MCP-1. For in vivo studies, IL-10−/− and WT mice were i.t. infected with 1×106 Pb yeasts and studied at several post-infection periods. Compared to WT mice, IL-10−/− mice showed increased resistance to P. brasiliensis infection as determined by the progressive control of pulmonary fungal loads and total clearance of fungal cells from dissemination organs. This behavior was accompanied by enhanced delayed-type hypersensitivity reactions, precocious humoral immunity and controlled tissue pathology resulting in increased survival times. In addition, IL-10−/− mice developed precocious T cell immunity mediated by increased numbers of lung infiltrating effector/memory CD4+ and CD8+ T cells. The inflammatory reactions and the production of Th1/Th2/Th17 cytokines were reduced at late phases of infection, paralleling the regressive infection of IL-10−/− mice.

Conclusions/Significance

Our work demonstrates for the first time that IL-10 plays a detrimental effect to pulmonary PCM due to its suppressive effect on the innate and adaptive immunity resulting in progressive infection and precocious mortality of infected hosts.  相似文献   

13.
Cytotoxic CD8+ T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8+ T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8+ T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4+ T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8+ T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.  相似文献   

14.
IgE-mediated activation of mast cells and basophils contributes to protective immunity against helminths but also causes allergic responses. The development and persistence of IgE responses are poorly understood, which is in part due to the low number of IgE-producing cells. Here, we used next generation sequencing to uncover a striking overlap between the IgE and IgG1 repertoires in helminth-infected or OVA/alum-immunized wild-type BALB/c mice. The memory IgE response after secondary infection induced a strong increase of IgE+ plasma cells in spleen and lymph nodes. In contrast, germinal center B cells did not increase during secondary infection. Unexpectedly, the memory IgE response was lost in mice where the extracellular part of IgG1 had been replaced with IgE sequences. Adoptive transfer studies revealed that IgG1+ B cells were required and sufficient to constitute the memory IgE response in recipient mice. T cell-derived IL-4/IL-13 was required for the memory IgE response but not for expansion of B cells from memory mice. Together, our results reveal a close relationship between the IgE and IgG1 repertoires in vivo and demonstrate that the memory IgE response is mainly conserved at the level of memory IgG1+ B cells. Therefore, targeting the generation and survival of allergen-specific IgG1+ B cells could lead to development of new therapeutic strategies to treat chronic allergic disorders.  相似文献   

15.
Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of the MIF-dependent responses to Trypanosoma cruzi, we investigated host resistance in MIF-/- mice (on the BALB/c background) during an intraperitoneal infection. We focused on the potential involvement of MIF in dendritic cell (DC) maturation and cytokine production. Following a challenge with 5 x 103 T. cruzi parasites, wild type (WT) mice developed a strong IL-12 response and adequate maturation of the draining mesenteric lymph node DCs and were resistant to infection. In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature DCs in the early phases of infection and rapidly succumbed to T. cruzi infection. The lack of maturation and IL-12 production by the DCs in response to total T. cruzi antigen (TcAg) was confirmed by in vitro studies. These effects were reversed following treatment with recombinant MIF. Interestingly, TcAg-stimulated bone marrow-derived DCs from both WT and MIF-/- mice had increased ERK1/2 MAPK phosphorylation. In contrast, p38 phosphorylation was only upregulated in WT DCs. Reconstitution of MIF to MIF-/- DCs upregulated p38 phosphorylation. The MIF-p38 pathway affected MHC-II and CD86 expression as well as IL-12 production. These findings demonstrate that the MIF-induced early DC maturation and IL-12 production mediates resistance to T. cruzi infection, probably by activating the p38 pathway.  相似文献   

16.
Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies.  相似文献   

17.
Interleukin (IL)-22, an immune cell-derived cytokine whose receptor expression is restricted to non-immune cells (e.g. epithelial cells), can be anti-inflammatory and pro-inflammatory. Mice infected with the tapeworm Hymenolepis diminuta are protected from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Here we assessed expulsion of H. diminuta, the concomitant immune response and the outcome of DNBS-induced colitis in wild-type (WT) and IL-22 deficient mice (IL-22-/-) ± infection. Interleukin-22-/- mice had a mildly impaired ability to expel the worm and this correlated with reduced or delayed induction of TH2 immunity as measured by splenic and mesenteric lymph node production of IL-4, IL-5 and IL-13 and intestinal Muc-2 mRNA and goblet cell hyperplasia; in contrast, IL-25 increased in the small intestine of IL-22-/- mice 8 and 12 days post-infection compared to WT mice. In vitro experiments revealed that H. diminuta directly evoked epithelial production of IL-25 that was inhibited by recombinant IL-22. Also, IL-10 and markers of regulatory T cells were increased in IL-22-/- mice that displayed less DNBS (3 mg, ir. 72h)-induced colitis. Wild-type mice infected with H. diminuta were protected from colitis, as were infected IL-22-/- mice and the latter to a degree that they were almost indistinguishable from control, non-DNBS treated mice. Finally, treatment with anti-IL-25 antibodies exaggerated DNBS-induced colitis in IL-22-/- mice and blocked the anti-colitic effect of infection with H. diminuta. Thus, IL-22 is identified as an endogenous brake on helminth-elicited TH2 immunity, reducing the efficacy of expulsion of H. diminuta and limiting the effectiveness of the anti-colitic events mobilized following infection with H. diminuta in a non-permissive host.  相似文献   

18.
Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88−/− mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88−/− mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m−/−) mice injected i.v. with MyD88−/− natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.  相似文献   

19.
20.
Over 25% of the world''s population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号