首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural killer T (NKT) cells are a subset of T cells that are activated by CD1d-glycolipid complexes through a semi-invariant αβ T cell receptor (NKT TCR). Upon activation, NKT cells secrete regulatory cytokines that are implicated in T helper cell responses. α-Galactosylceramide (α-GalCer) is a potent NKT cell agonist when presented by CD1d. Phenyl ring substitutions of the α-GalCer fatty acid moiety were recently found to be superior in eliciting regulatory cytokines. Crystal structures of four new mouse CD1d-lipid complexes (five structures), a new PBS-25 complex, and CD1d with an endogenous ligand, at 1.6-1.9 Å resolution, reveal that the α-GalCer phenyl analogues impart minor structural differences to the A′-pocket, while the sphingosine and galactose moieties, important for NKT TCR recognition, remain virtually unchanged. The observed differences in cytokine-release profiles appear to be associated with increased stability of the CD1d-glycolipid complexes rather than increased affinity for the NKT TCR. Furthermore, comparison of mouse CD1d-glycolipid complexes in different crystallographic space groups reveals considerable conformational variation, particularly above the F′-pocket, the primary site of interaction with the NKT TCR. We propose that modifications of the sphingosine moiety or other substitutions that decrease α-GalCer flexibility would stabilize the F′-pocket. Such compounds might then increase CD1d affinity for the NKT TCR and further enhance the stimulatory and regulatory properties of α-GalCer derivatives.  相似文献   

2.
3.
Tempering of the innate immune response by T lymphocytes has been demonstrated to play a critical role in protecting animals from inflammation-induced death; however, its role in humans remains unknown. Patients with HBV-related acute-on-chronic liver failure (ACLF) share a striking similarity to the inflammatory response in septic shock where a hyperactive innate response is observed. The present study attempted to characterize the features of CD3+ T cells and monocytes and evaluate their clinical implications in 55 patients with HBV-related ACLF, 30 patients with chronic hepatitis B (CHB) and 30 healthy controls (HC). We found that the ratio between circulating CD3+ T cells and monocytes (T/M) was decreased in ACLF patients, due to decreased CD3 counts and increased monocyte counts compared with CHB and HC subjects. We also found that the T/M ratios were decreased from the early to the intermediate stage and reached the lowest value at the late stage in ACLF patients. Analyses with clinical parameters revealed that T/M ratios were negatively correlated with the Model for End-Stage Liver Disease Score and direct bilirubin, and positively correlated with prothrombin activity. Moreover, increased T/M ratios were observed in patients with good prognosis, but not in patients with a poor outcome; and ACLF patients who received liver transplantation exhibited an increased T/M ratio. Importantly, we found that programmed death-1 receptor (PD-1) was drastically upregulated on both CD4+ T and CD8+ T cells in ACLF, which at least in part contributed to the T-cell loss in these patients. Mechanically, the in vitro co-culture assay revealed that both CD4+ T and CD8+ T cells, as well as regulatory T cells, could inhibit TNF-α secretion by monocytes. In addition, the TNF-α levels in ACLF serum were negatively correlated with T/M ratios. In conclusion, our study identified the novel potential role of T/M ratio in predicting disease progression and provided novel evidences for further studies of the immunopathogenesis in ACLF.  相似文献   

4.

Background

The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured.

Results

Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group.

Conclusions

Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.  相似文献   

5.
Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.  相似文献   

6.

Background

Recurrent graft infection limited the effect of LT, early recognition and prophylaxis of HBV recurrence are very important, and interleukin 28B (IL‐28B) gene was reported to be associated with HBV infection.

Aims

To explore the association between IL-28B single-nucleotide polymorphisms (SNPs) and graft re-infection after liver transplantation(LT).

Methods

21 recipients with hepatitis B virus(HBV) recurrence and 157 recipients without HBV recurrence were included. We studied three SNPs in the promoter region of IL-28B gene at the positions rs12979860, rs12980275 and rs8099917 by HRM analysis (high-resolution melting curve analysis).

Results

Hepatic allograft dysfunction was more likely to be associated with IL-28B SNPs. However, there was no significant difference in the frequencies of IL-28B gene distribution in recipients with or without HBV recurrence.

Conclusion

IL-28B gene polymorphism may be associated with the prognosis of LT recipients but it needs more experiments.  相似文献   

7.
Although CD4+CD25+ Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.  相似文献   

8.
The widely used over-the-counter analgesic acetaminophen (APAP) is the leading cause of acute liver failure in the United States and due to this high incidence, a recent FDA Advisory Board recommended lowering the maximum dose of APAP. Kava herbal dietary supplements have been implicated in several human liver failure cases leading to the ban of kava-containing products in several Western countries. In the US, the FDA has issued warnings about the potential adverse effects of kava, but kava dietary supplements are still available to consumers. In this study, we tested the potential of kava extract to potentiate APAP-induced hepatocyte cytotoxicity. In rat primary hepatocytes, co-treatment with kava and APAP caused 100% loss of cell viability, while the treatment of kava or APAP alone caused ∼50% and ∼30% loss of cell viability, respectively. APAP-induced glutathione (GSH) depletion was also potentiated by kava. Co-exposure to kava decreased cellular ATP concentrations, increased the formation of reactive oxygen species, and caused mitochondrial damage as indicated by a decrease in mitochondrial membrane potential. In addition, similar findings were obtained from a cultured rat liver cell line, clone-9. These observations indicate that kava potentiates APAP-induced cytotoxicity by increasing the magnitude of GSH depletion, resulting in oxidative stress and mitochondrial dysfunction, ultimately leading to cell death. These results highlight the potential for drug-dietary supplement interactions even with widely used over-the-counter drugs.  相似文献   

9.
10.
2A protease of the pathogenic coxsackievirus B3 is key to the pathogenesis of inflammatory myocarditis and, therefore, an attractive drug target. However lack of a crystal structure impedes design of inhibitors. Here we predict 3D structure of CVB3 2Apro based on sequence comparison and homology modeling with human rhinovirus 2Apro. The two enzymes are remarkably similar in their core regions. However they have different conformations at the N-terminal. A large number of N-terminal hydrophobic residues reduce the thermal stability of CVB3 2Apro, as we confirmed by fluorescence, western blot and turbidity measurement. Molecular dynamic simulation revealed that elevated temperature induces protein motion that results in frequent movement of the N-terminal coil. This may therefore induce successive active site changes and thus play an important role in destabilization of CVB3 2Apro structure.  相似文献   

11.
12.
ALKBH5, a member of AlkB family proteins, has been reported as a mammalian N6-methyladenosine (m6A) RNA demethylase. Here we report the crystal structure of zebrafish ALKBH5 (fALKBH5) with the resolution of 1.65 Å. Structural superimposition shows that fALKBH5 is comprised of a conserved jelly-roll motif. However, it possesses a loop that interferes potential binding of a duplex nucleic acid substrate, suggesting an important role in substrate selection. In addition, several active site residues are different between the two known m6A RNA demethylases, ALKBH5 and FTO, which may result in their slightly different pathways of m6A demethylation.  相似文献   

13.
The organization of carbonic anhydrase (CA) system in halo- and alkaliphilic cyanobacterium Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of putative extracellular α-CA of 60 kDa in the glycocalyx, forming a tight sheath around the cell, and of two intracellular β-CA is reported. We show for the first time that the β-CA of 60 kDa is expressed constitutively and associated with polypeptides of photosystem II (β-CA-PS II). Another soluble β-CA of 25 kDa was induced in low-bicarbonate medium. Induction of synthesis of the latter β-CA was accompanied by an increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of a CO2-concentrating mechanism.  相似文献   

14.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

15.
Phenobarbital (PB) induction of CYP2B, a representative target gene of constitutive androstane receptor (CAR), has been observed to be attenuated in preneoplastic lesions of rat liver; however, molecular basis for this attenuation is poorly understood. In this report, we provide evidence indicating that the CAR expressed in the hepatic preneoplastic lesions of rats and mice was resistant to nuclear translocation and transactivation of the PB-responsive enhancer module upon PB treatment. These observations suggest that the attenuation of the induction of CYP2B by PB in hepatic preneoplastic lesions is evidently a consequence of impaired nuclear translocation of CAR.  相似文献   

16.
The level of integrin alpha(v)beta3 and its ligand osteopontin (OPN) has been directly correlated to tumorigenicity of melanoma and other cancer cells. We have previously shown an increase in pp(60c-Src) kinase activity associated with integrin alpha(v)beta3 in melanoma cells (M21) treated with soluble OPN. pp(60c-Src) kinase activity was not observed in melanoma cells expressing alpha(v) that lacks the cytoplasmic domain (alpha(v)995). Results of the current study demonstrate that the amino acid sequence '995RPPQEEQERE1004' in the beta-turn of alpha(v) chain is required for the interaction of pp(60c-Src). Our results suggest that the beta-turn of alpha(v) chain may be indispensable for alpha(v)-associated signaling complex formation and outside-in signaling. To further analyze the alpha(v)beta3 signaling in melanoma cells, we over expressed OPN in M21 cells (M21/OPN). CD44 surface expression and MMP-2 activity in the conditioned medium were increased to a greater extent in M21/OPN cells as compared with M21 or alpha(v)995 cells. Also, M21/OPN cells exhibit increased motility, which is markedly reduced upon treatment with inhibitors to alpha(v) and MMP-2. Our findings suggest that the increase in MMP-2 activity is integrin-dependent as MMP-2 activity is reduced in cells treated with an inhibitor to alpha(v) or in alpha(v)995 cells expressing mutant alpha(v).  相似文献   

17.
Liang B  Song X  Liu G  Li R  Xie J  Xiao L  Du M  Zhang Q  Xu X  Gan X  Huang D 《Experimental cell research》2007,313(13):2833-2844
Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 microM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca(2+) from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.  相似文献   

18.
Reduced mitochondrial fatty acid (FA) β-oxidation can cause accumulation of triglyceride in liver, while intake of eicosapentaenoic acid (EPA) has been recommended as a promising novel therapy to decrease hepatic triglyceride content. However, reduced mitochondrial FA β-oxidation also facilitates accumulation of EPA. To investigate the interplay between EPA administration, mitochondrial activity and hepatic triglyceride accumulation, we investigated the effects of EPA administration to carnitine-deficient mice with impaired mitochondrial FA β-oxidation. C57BL/6J mice received a high-fat diet supplemented or not with 3% EPA in the presence or absence of 500 mg mildronate/kg/day for 10 days. Liver mitochondrial and peroxisomal oxidation, lipid classes and FA composition were determined. Histological staining was performed and mRNA level of genes related to lipid metabolism and inflammation in liver and adipose tissue was determined. Levels of pro-inflammatory eicosanoids and cytokines were measured in plasma. The results showed that mildronate treatment decreased hepatic carnitine concentration and mitochondrial FA β-oxidation and induced severe triglyceride accumulation accompanied by elevated systemic inflammation. Surprisingly, inclusion of EPA in the diet exacerbated the mildronate-induced triglyceride accumulation. This was accompanied by a considerable increase of EPA accumulation while decreased total n-3/n-6 ratio in liver. However, inclusion of EPA in the diet attenuated the mildronate-induced mRNA expression of inflammatory genes in adipose tissue. Taken together, dietary supplementation with EPA exacerbated the triglyceride accumulation induced by impaired mitochondrial FA β-oxidation. Thus, further thorough evaluation of the potential risk of EPA supplementation as a therapy for NAFLD associated with impaired mitochondrial FA oxidation is warranted.  相似文献   

19.
The marine microalga Pavlova salina produces lipids containing approximately 50% omega-3 long chain polyunsaturated fatty acids (LC-PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Three cDNA sequences, designated PsD4Des, PsD5Des, PsD8Des, were isolated from P. salina and shown to encode three front-end desaturases with Delta4, Delta5 and Delta8 specificity, respectively. Southern analysis indicated that the P. salina genome contained single copies of all three front-end fatty acid desaturase genes. When grown at three different temperatures, analysis of fatty acid profiles indicated P. salina desaturation conversions occurred with greater than 95% efficiency. Real-Time PCR revealed that expression of PsD8Des was higher than for the other two genes under normal growth conditions, while PsD5Des had the lowest expression level. The deduced amino acid sequences from all three genes contained three conserved histidine boxes and a cytochrome b(5) domain. Sequence alignment showed that the three genes were homologous to corresponding desaturases from other microalgae and fungi. The predicted activities of these three front-end desaturases leading to the synthesis of LC-PUFA were also confirmed in yeast and in higher plants.  相似文献   

20.

Background

Cluster of differentiation 1 (CD1) represents a family of proteins which is involved in lipid-based antigen presentation. Primarily, antigen presenting cells, like B cells, express CD1 proteins. Here, we examined the cell-surface distribution of CD1d, a subtype of CD1 receptors, on B lymphocytes.

Methods

Fluorescence labeling methods, including fluorescence resonance energy transfer (FRET), were employed to investigate plasma membrane features of CD1d receptors.

Results

High FRET efficiency was observed between CD1d and MHC I heavy chain (MHC I-HC), β2-microglobulin (β2m) and MHC II proteins in the plasma membrane. In addition, overexpression of CD1d reduced the expression of MHC II and increased the expression of MHC I-HC and β2m proteins on the cell-surface. Surprisingly, β2m dependent CD1d isoform constituted only ~ 15% of the total membrane CD1d proteins. Treatment of B cells with methyl-β-cyclodextrin (MβCD) / simvastatin caused protein rearrangement; however, FRET demonstrated only minimal effect of these chemicals on the association between CD1d and GM1 ganglioside on cell-surface. Likewise, a modest effect was only observed in a co-culture assay between MβCD/simvastatin treated C1R–CD1d cells and invariant natural killer T cells on measuring secreted cytokines (IFNγ and IL4). Furthermore, CD1d rich regions were highly sensitive to low concentration of Triton X-100. Physical proximity between CD1d, MHC and GM1 molecules was also detected in the plasma membrane.

Conclusions

An intricate relationship between CD1d, MHC, and lipid species was found on the membrane of human B cells.

General significance

Organization of CD1d on the plasma membrane might be critical for its biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号