首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigen-specific regulatory CD4+ T cells have been described but there are few reports on regulatory CD8+ T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8+ T cells from 8.3-NOD transgenic mice. CD8+ T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-β, and all-trans retinoic acid (ATRA) for 5 days. CD8+ T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-β and ATRA had low Foxp3+ expression (1.7 ± 0.9% and 3.2 ± 4.5%, respectively). In contrast, CD8+ T cells induced by exposure to IGRP, SpDCs, TGF-β, and ATRA showed the highest expression of Foxp3+ in IGRP-reactive CD8+ T cells (36.1 ± 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8+ T cells cultured with IGRP, SpDCs, TGF-β, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8+ T cells suppressed the proliferation of diabetogenic CD8+ T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-β induces CD8+Foxp3+ T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.  相似文献   

2.
Foxp3+ regulatory T lymphocytes (Tregs) usually act as an immune suppressor and correlate with poorer survival in malignancies. This study aims to investigate the distribution and characterization of Foxp3+ subset in peripheral blood mononuclear cells (PBMCs) and tumor tissues from extranodal NK/T cell lymphoma (ENKTL). Our study showed the percentage of Foxp3+ subset from PBMC was significantly higher than that of healthy individuals (P<0.001). The Foxp3+ subset from PBMCs expressed CD45RO, CTLA4, GITR, CCR7, and had an IL-10highIFNγ+TGFβ+IL-2lowIL-17low cytokine secreting phenotype. Interestingly, the existence of EBV antigen-specific CD8+Foxp3+ Tregs was discovered in ENKTL. Furthermore, the high density of Foxp3+ TILs was associated with improved progression-free survival (PFS) in ENKTL patients (P<0.05). Collectively, our study implicates that EBV antigens could induce antigen-specific CD8+Foxp3+ Tregs in ENKTL, and Foxp3+ TILs is an independent factor for PFS in ENKTL.  相似文献   

3.
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4+CD25+ regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4+CD25+Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4+CD25+Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4+CD25+Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4+CD25+Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.  相似文献   

4.
5.
Mesenchymal stromal cells (MSCs) and regulatory T cells (Tregs) have both garnered abundant interests from immunologists worldwide, as both MSCs and Tregs can be considered immunosuppressive in their own right. But a little attention has been paid to the impacts of MSCs on Tregs. To clarify the effects of MSCs on Tregs, we performed the coculture systems within MSCs and Tregs. We confirmed that MSC-exposed Tregs are capable of more immunosuppressive than Tregs without coculturing with MSCs. And this augmenting suppressive capacity was accompanied with an upregulation of programmed cell death 1 receptor (PD-1) on Tregs. Importantly, we found that cell viability of Tregs was excluded from the influences of MSCs. Finally, we showed that PD-1/B7-H1 interactions and IL-10 might be responsible for the enhanced suppressive capability of MSC-exposed Tregs. Further analysis revealed that PD-1/B7-H1 interactions were not responsible for the productions of IL-10 and TGF-β1 in the MSC-Treg coculture systems; in contrast, IL-10 rather than TGF-β1 played a role in the upregualtion of PD-1. Furthermore, this is the first explorative study to evaluate the immunomodulation of MSCs on the suppressive capacity of Tregs in MSC–Treg in vitro coculture setting.  相似文献   

6.
Different functions have been attributed to CD4+CD25+Foxp3+ regulatory T-cells (Tregs) during malaria infection. Herein, we describe the disparity in Treg response and pro- and anti-inflammatory cytokines during infection with Plasmodium berghei ANKA between young (3-week-old) and middle-aged (8-month-old) C57BL/6 mice. Young mice were susceptible to cerebral malaria (CM), while the middle-aged mice were resistant to CM and succumbed to hyperparasitemia and severe anemia. The levels of pro-inflammatory cytokines, such as TNF-α, in young CM-susceptible mice were markedly higher than in middle-aged CM-resistant mice. An increased absolute number of Tregs 3-5 days post-inoculation, co-occurring with elevated IL-10 levels, was observed in middle-aged CM-resistant mice but not in young CM-susceptible mice. Our findings suggest that Treg proliferation might be associated with the suppression of excessive pro-inflammatory Th1 response during early malaria infection, leading to resistance to CM in the middle-aged mice, possibly in an IL-10-dependent manner.  相似文献   

7.
The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or “cytokine storm” that is attributable to the deficiencies in immune regulatory mechanisms. CD4+FoxP3+ regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.  相似文献   

8.
In order to know the effect of pre-existing Trichinella spiralis infection on experimentally induced intestinal inflammation and immune responses, we induced colitis in T. spiralis-infected mice and observed the severity of colitis and the levels of Th1, Th2, and regulatory cytokines and recruitment of CD4+CD25+Foxp3+ T (regulatory T; Treg) cells. Female C57BL/6 mice were infected with 250 muscle larvae; after 4 weeks, induction of experimental colitis was performed using 3% dextran sulfate sodium (DSS). During the induction period, we observed severity of colitis, including weight loss and status of stool, and evaluated the disease activity index (DAI). A significantly low DAI and degree of weight loss were observed in infected mice, compared with uninfected mice. In addition, colon length in infected mice was not contracted, compared with uninfected mice. We also observed a significant increase in production of pro-inflammatory cytokines, IL-6 and IFN-γ, in spleen lymphocytes treated with DSS; however, such an increase was not observed in infected mice treated with DSS. Of particular interest, production of regulatory cytokines, IL-10 and transforming growth factor (TGF)-β, in spleen lymphocytes showed a significant increase in mice infected with T. spiralis. A similar result was observed in mesenteric lymph nodes (MLN). Subsets of the population of Treg cells in MLN and spleen showed significant increases in mice infected with T. spiralis. In conclusion, T. spiralis infection can inhibit the DSS-induced colitis in mice by enhancing the regulatory cytokine and Treg cells recruitment.  相似文献   

9.
We have previously shown that neutrophilic elastase converts human immature dendritic cells (DCs) into TGF-β secreting cells and reduces its allostimulatory ability. Since TGF-β has been involved in regulatory T cells (Tregs) induction we analyzed whether elastase or neutrophil-derived culture supernatant treated DCs induce CD4+FOXP3+ Tregs in a mixed lymphocyte reaction (MLR). We found that elastase or neutrophil-derived culture supernatant treated DCs increased TGF-β and decreased IL-6 production. Together with this pattern of cytokines, we observed a higher number of CD4+FOXP3+ cells in the MLR cultures induced by elastase or neutrophil-derived culture supernatant treated DCs but not with untreated DCs. The higher number of CD4+FOXP3+ T cell population was not observed when the enzymatic activity of elastase was inhibited with an elastase specific inhibitor and also when a TGF-β1 blocking antibody was added during the MLR culture. The increased number of CD4+ that express FOXP3 was also seen when CD4+CD25- purified T cells were cocultured with the TGF-β producing DCs. Furthermore, these FOXP3+ T cells showed suppressive activity in vitro.These results identify a novel mechanism by which the tolerogenic DCs generated by elastase exposure contribute to the immune regulation and may be relevant in the pathogenesis of several lung diseases where the inflammatory infiltrate contains high numbers of neutrophils and high elastase concentrations.  相似文献   

10.
Nitric oxide (NO) is involved in the clearance of several types of bacteria, viruses and parasites. Although the roles of NO and CD8+ T cells in the immune response to malaria have been extensively studied, their actual contributions during the blood stages of malaria infection remain unclear.In this work, we corroborate that serum NO levels are not associated with the in vivo elimination of the blood stages of Plasmodium chabaudi AS. In addition, we show that CD8+ T cells exhibit increased apoptosis and up regulate the expression of TNF-α mRNA on day 4 post-infection and IFN-γ and IL-10 mRNA on day 11 post-infection. Interestingly, only the levels of IFN-γ and IL-10 expression are affected when iNOS is inhibited with aminoguanidine (AG), suggesting that NO could be involved in the activation of CD8+ T cells during the blood stages of plasmodium infection.  相似文献   

11.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

12.
13.
As most infections by the helminth parasite elicit the recruitment of CD4+CD25+Foxp3+ T (Treg) cells, many scientists have suggested that these cells could be used for the treatment of immune-mediated inflammation and associated diseases. In order to investigate the distribution and alteration of activated Treg cells, we compared the expression levels of Treg cell activation markers in the ileum and gastrocnemius tissues 1, 2, and 4 weeks after infection. The number of Treg cells was monitored using GFP-coded Foxp3 transgenic mice. In mice at 1 week after Trichinella spiralis infection, the number of activated Treg cells was higher than in the control group. In mice at 2 weeks after infection, there was a significant increase in the number of cells expressing Foxp3 and CTLA-4 when compared to the control group and mice at 1 week after infection. At 4 weeks after infection, T. spiralis was easily identifiable in nurse cells in mouse muscles. In the intestine, the expression of Gzmb and Klrg1 decreased over time and that of Capg remained unchanged for the first and second week, then decreased in the 4th week. However, in the muscles, the expression of most chemokine genes was increased due to T. spiralis infection, in particular the expression levels of Gzmb, OX40, and CTLA-4 increased until week 4. In addition, increased gene expression of all chemokine receptors in muscle, CXCR3, CCR4, CCR5, CCR9, and CCR10, was observed up until the 4th week. In conclusion, various chemokine receptors showed increased expressions combined with recruitment of Treg cells in the muscle tissue.  相似文献   

14.
β-1,4-galactosyltransferase-I (β-1,4-GalT-I) has two isoforms that differ only in the length of their cytoplasmic domains. In this study, we found that both the long and short isoforms of β-1,4-GalT-I were expressed in human CD4+ T lymphocytes, and localized in the cytoplasm and on the plasma membrane. The expression level of β-1,4-GalT-I was increased in CD4+ T cells after stimulation with interleukin (IL)-2, and was further increased after stimulation with IL-2 + IL-12, but decreased after stimulation with IL-2 + IL-4 when compared to stimulation with IL-2 alone. We also demonstrated that the cellular adhesion of CD4+ T cells was significantly increased upon cytokine stimulation, and was inhibited by α-lactalbumin, indicating that the increase in adhesion was positively correlated with the expression and activity of long β-1,4-GalT-I. Collectively, the data suggest that β-1,4-GalT-I plays a role in the cellular adhesion of CD4+ T cells.  相似文献   

15.
Vasoactive intestinal peptide (VIP) is a well-known anti-inflammatory neuropeptide. The capacity of VIP can be exhibited through inhibiting inflammatory responses, shifting the Th1/Th2 balance in favor of anti-inflammatory Th2 immunity and inducing regulatory T cells (Tregs) with suppressive activity. In addition to pro-inflammatory Th1 response, Th17 are also believed to play important roles in the pathogenesis of rheumatoid arthritis (RA). In this study, we used collagen-induced arthritis (CIA) model in Wistar rats to investigate the role of VIP in the balance of CD4+ CD25+ Tregs and Th17 on RA. Data presented here showed that administration of VIP decreased incidence and severity of CIA. Disease suppression was associated with the upregulation of CD4+ CD25+ Tregs, downregulation of Th17- and Th1-type response and influence on the RANK/RANKL/OPG system. The results provide novel evidence that the therapeutic effects of VIP on CIA rats were associated with the balance of CD4+ CD25+ Tregs and Th17.  相似文献   

16.
Objective  We compared the immune system state in metastatic tumour draining lymph nodes (mTDLN) and metastasis free TDLN (mfTDLN) in 53 early stage cervical cancer patients to assess whether the presence of metastatic tumour cells worsen the balance between an efficacious anti-tumour and a tolerogenic microenvironment. Methods  The immune system state was measured by immunophenotypic and functional assessment of suppressor and effector immune cell subsets. Results  Compared to mfTDLN, mTDLN were significantly enriched in CD4+Foxp3+ regulatory T cells (Treg), which, in addition, exhibited an activated phenotype (HLA-DR+ and CD69+). Treg in mTDLN were also significantly enriched in neuropilin-1 (Nrp1) expressing cells, a subset particularly potent in dampening T cell responses. mTDLN tended to be enriched in a population of CD8+Foxp3+T cells (operationally defined as CD8+Treg) that showed a suppressor potency similar to Treg under the same experimental conditions. Plasmacytoid dendritic cells (pDC) and myeloid DC (mDC) generally show distinct roles in inducing T cell tolerance and activation, respectively. In line with the excess of suppressor T cells, the ratio pDC to mDC was significantly increased in mTDLN. Immunohistochemical testing showed that metastatic tumour cells produced the vascular endothelial growth factor, a natural ligand for Nrp1 expressed on the cell surface of Nrp1+Treg and pDC, and therefore a potential mediator by which tumour cells foster immune privilege in mTDLN. Consistent with the overall tolerogenic profile, mTDLN showed a significant Tc2 polarisation and tended to contain lower numbers of CD45RA+CD27 effector memory CD8+T cells. Conclusions  The increased recruitment of suppressor type cells concomitant with the scarcity of cytotoxic type cells suggests that in mTDLN the presence of tumour cells could tip the balance against anti-tumour immune response facilitating the survival of metastatic tumour cells and possibly contributing to systemic tolerance.  相似文献   

17.

Background

The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured.

Results

Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group.

Conclusions

Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.  相似文献   

18.
19.
In an effort to define the mechanism underlying the host immune downregulation inherent to Trichinella spiralis infection, we compared the levels of Th1, Th2, and regulatory cytokines and CD4+CD25+ forkhead box P3 (FoxP3)+ T (Treg) cell recruitment, as well as cellular pathology in the airway between T. spiralis infected and uninfected asthma-induced mice. After the induction of allergic airway inflammation, we noted influxes of inflammatory cells into the peribronchial tree. However, in the T. spiralis infection groups, cellular infiltration was minimal around the bronchial tree, with only a smattering of inflammatory cells. In the OVA-challenged group after T. spiralis infection, the numbers of macrophages and eosinophils in the bronchial alveolar lavage fluid were reduced by 23% and 52%, respectively, as compared to those of the OVA-challenged group. Airway hyperresponsiveness of OVA-challenged mice after T. spiralis infection was significantly suppressed as compared to the OVA-only challenged mice. The T. spiralis-infected mice exhibited a significant reduction in IL-5 concentrations relative to that noted in the OVA-challenged group (p < 0.01). Nevertheless, the regulatory cytokines IL-10 and TGF-β levels were increased significantly as the result of T. spiralis infection, and we verified the recruitment of Treg cells in lung draining lymph nodes via T. spiralis infection. Therefore, Treg cells, which were recruited by T. spiralis infection, might ameliorate lung function and reduce allergic airway inflammation.  相似文献   

20.
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号