首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The age dynamics of the content of the immune proteasome subunits LMP2 and LMP7 in rat thymus during prenatal and early postnatal ontogeny was studied. The LMP2 and LMP7 immune subunits were detected by Western blotting already by the 18th day of embryonic development, their amount increased to the 21st day to the level characteristic of the postnatal state. Double immunofluorescent labeling showed that in the thymus tissue the largest amount of LMP2 and LMP7 is localized in epithelial cells, whereas the level of their expression in thymocytes is lower. The results suggest that the establishment in thymus of selection processes, which depend on activity of immune proteasomes, can take place already in prenatal ontogeny. Analysis of age dynamics of the natural apoptosis level in thymocytes also favors this supposition. The presence of immune proteasomes in thymocytes during perinatal ontogeny suggests that, besides the antigen presentation, immunoproteasomes may possess other important functions.  相似文献   

2.
Proteasomes in the liver of August rats (RT1c) were investigated 30 days after allotransplantation of Wistar rat (RT1u) thyroid tissue under renal capsule with/without induction of donor-specific tolerance by donor splenocyte intraportal administration. The levels of total proteasome pool, immune proteasomes containing subunits LMP2 and/or LMP7, and proteasome regulators 19S and 11S were defined. Intact and sham-operated August rats were used as control groups. The level of all immune proteasome forms and 11S regulator increased while the level of the total proteasome pool and 19S regulator decreased in the liver of experimental animals compared to the control groups, which indicated changes of liver functional state after transplantation. The 19S/11S ratio increased in the liver of nontolerant rats compared to tolerant animals. In the liver of tolerant rats with accepted grafts, the number of mononuclear cells expressing the immune subunit LMP2 greatly increased in comparison with control and nontolerant animals. Study of accepted grafts showed an increase in the ratio of LMP2/LMP7 immune subunits and 19S/11S regulators in them, compared to the tissue replacing the rejected grafts. Immune proteasomes were almost completely absent from the control intact thyroid tissue, while 19S/11S ratio was maximal in it. Thus, the development of the immune reaction or its suppression are accompanied by a change in the balance between different proteasome forms. Immune subunit LMP7 and 11S regulator are associated with the response against donor tissue. On the contrary, immune subunit LMP2 and 19S regulator are likely to be important for the development of immune tolerance and surviving tissue functioning. Immunofluorescence assay revealed a low content of the immune proteasomes in the follicle cells. Probably, formation of antigens for the major histocompatibility complex class I molecules was impaired by the low content of immune proteasomes, which led to immunological tolerance of hormone-producing follicle cells.  相似文献   

3.
4.
Role of immunoproteasomes in cross-presentation   总被引:3,自引:0,他引:3  
The evidence that proteasomes are involved in the processing of cross-presented proteins is indirect and based on the in vitro use of proteasome inhibitors. It remains, therefore, unclear whether cross-presentation of MHC class I peptide epitopes can occur entirely within phagolysosomes or whether it requires proteasome degradation. To address this question, we studied in vivo cross-presentation of an immunoproteasome-dependent epitope. First, we demonstrated that generation of the immunodominant HY Uty(246-254) epitope is LMP7 dependent, resulting in the lack of rejection of male LMP7-deficient (LMP7(-/-)) skin grafts by female LMP7(-/-) mice. Second, we ruled out an altered Uty(246-254)-specific T cell repertoire in LMP7(-/-) female mice and demonstrated efficient Uty(246-254) presentation by re-expressing LMP7 in male LMP7(-/-) cells. Finally, we observed that LMP7 expression significantly enhanced cross-priming of Uty(246-254)-specific T cells in vivo. The observations that male skin grafts are not rejected by LMP7(-/-) female mice and that presentation of a proteasome-dependent peptide is not efficiently rescued by alternative cross-presentation pathways provide strong evidence that proteasomes play an important role in cross-priming events.  相似文献   

5.
The finding that two subunits of the proteasome, LMP2 and LMP7, are encoded in the major histocompatibility complex (MHC) has linked the proteasome which represents a major extralysosomal proteolytic system to the processing of intracellular antigens. Here we describe a second form of the human LMP7 cDNA, LMP7-E2, which has been identified during the characterization of novel genes in the MHC. The analysis of the genome organization of LMP7 revealed that LMP7-E1 and LMP7-E2 arise by alternative exon usage. Using specific antibodies against LMP2 and LMP7, we show that they are co-expressed with class I MHC molecules as well as a putative peptide transporter. The polypeptides encoded by LMP7 and LMP2 undergo proteolytic processing when incorporated into proteasomes, and the LMP7 precursor is derived mainly from LMP7-E2. Furthermore, our data suggest that LMP7 and LMP2 are mutually dependent for their incorporation into the proteasomal complex.  相似文献   

6.
Changes in the structure of the rat spleen and the distribution of immune proteasomes in it during early postnatal development have been studied using double immunofluorescent staining of tissue sections with antibodies to the LMP7 immune proteasome subunit and to specific markers of T and B lymphocytes. It has been shown that the white pulp on postnatal day 5 is not yet colonized by lymphocytes and contains a smaller amount of immune proteasomes than the red pulp. At this stage, T and B lymphocytes concentrate mainly in the red pulp. On day 8, B lymphocytes occupy the marginal zone, while T lymphocytes aggregate into dense strands close to the white pulp. By day 18, T lymphocytes form periarteriolar sheaths in the white pulp, and the contents of immune proteasomes in the red and white pulp become equally high. An increase in the total content of immune proteasomes in the spleen on the third postnatal week was revealed in our previous study by Western blotting. In addition to T and B lymphocytes, immune proteasomes have also been revealed in other spleen cell types, probably in macrophages and reticular cells of the white pulp. Thus, the postnatal development of the spleen is associated with an increase in the contents of immune proteasomes in it.  相似文献   

7.
The expression of the total proteasome pool, immune subunits LMP2 and LMP7, TAP1 and TAP2 transporters, and RT1A molecules of the major histocompatibility complex (MHC) class I in ascite Zajdela hepatoma cells was studied on the 10th day after implantation into Brattleboro rats with the hereditary defect in the synthesis of arginine-vasopressin (AVP) in the hypothalamus and WAG rats with normal AVP expression. Western-blot analysis revealed a threefold increase in the total number of proteasomes and immune subunit LMP2 and an eightfold increase in the immune subunits LMP7 in Zajdela hepatoma after its implantation in Brattleboro rats as compared with WAG rats. Differences in the expression of immune subunits LMP2 and LMP7 in Zajdela hepatoma in Brattleboro rats may contribute to different functions of these proteasomes, namely, the important role of the subunit LMP7 in antitumor immunity. Zajdela hepatoma growth in WAG rats was accompanied by a fall in both the total proteasome pool and immune proteasomes as compared with their content in Brattleboro rats, whose tumors regressed. The analysis of the content of peptide transporters TAP1 and TAP2 in Zajdela hepatoma implanted into Brattleboro and WAG rats showed their pronounced expression in tumor cells of both rat strains. In Zajdela hepatoma implanted into Brattleboro rats, a threefold increase in the basic molecule of MHC class I-RT1A was identified as compared with its expression in the tumor implanted to WAG rats. Furthermore, the content of CD8 and CD4 T-lymphocytes in the spleen of WAG and Brattleboro rats on the 10th day after implantation of Zajdela hepatoma was analyzed with flow cytometry. An increase in T-lymphocytes expressing the CD8 and CD4 antigens in the spleen of Brattleboro rats after implantation of the tumor as compared with WAG rats was shown. Increased numbers of both cytotoxic T lymphocytes and helper T-cells may facilitate tumor regression in Brattleboro rats. At the same time, a reduced number of subpopulations of T-lymphocytes in the spleen of WAG rats after implantation of hepatoma was accompanied by splenomegaly and growth of the tumor. Based on analysis of the data obtained it can be concluded that the deficiency of AVP in Brattleboro rats in Zajdela hepatoma leads to an increased expression of immune subunit LMP7 and basic molecules of MHC class I resulting in tumor immunogenicity and its elimination by the adaptive immune system.  相似文献   

8.
9.
The multicatalytic proteinase complex (MPC or proteasome) from bovine thymus was isolated and purified to homogeneity applying a protocol utilizing ion exchange and gel permeation chromatography as major purification tools. The purified complex shows molecular properties that are common for proteasomal molecules (high molecular mass, multisubunit organization, and multiple proteolytic activities) even though a peculiar subunit composition and the presence of specific regulatory mechanisms affecting the assembled proteolytic activities suggest a specialized function for this complex. Thymus proteasome is characterized by the presence of LMP2, LMP7, and LMP10 (MECL1) subunits, which replace the X, Y, and Z subunits. Since a similar complex was previously isolated in bovine spleen, it appears that the proteasomal population containing the LMP subunits is characteristic for organs involved in immune response. Both the thymus and spleen proteasomes are characterized by a marked efficiency in cleaving peptide bonds after branched-chain and aromatic amino acids, indicating that this proteasomal population is most likely involved in intracellular processing of class I antigenic peptides and is an example of an "in vivo" functioning immunoproteasome. However, in spite of several similarities, the complexes isolated from the two lymphoid organs do not show superimposable functional properties, which suggests the presence of organ-specific regulatory mechanisms affecting each of the proteolytic components assembled in the complex.  相似文献   

10.
Searching the antitumor drug targets among proteasomes, “ubiquitous” enzyme systems, may provide a new impulse to the antitumor drug discovery. In this study, changes in the proteasome pool in the development of human papillary thyroid carcinoma were determined. Proteasome activities were evaluated by hydrolysis of commercial fluorogenic peptides. Changes in the expression of the total proteasome pool, proteasome 19S activator and proteolytic constitutive subunits X(β5), Y(β1) and immune subunits LMP7 (β5i) and LMP2 (β1i) were investigated by Western blotting. The distribution of the proteasome subunits in thyroid gland cells was detected by immunohistochemistry. It was shown that the chymotrypsin- and caspase-like activities as well as the expression of the total proteasome pool, proteasome 19S activator and immune subunits increased gradually in the tumors at the T2N0M0 and T3N0M0 stages in comparison with the control tissues. Among the structures studied, the expression of the 19S activator and immune proteasomes, which contain the LMP2 (β1i) subunit, was enhanced to the largest degree in tumor cells. The data obtained may be implicated in a new therapeutic strategy. Taking into consideration the antitumor function of the immune proteasomes, we advance the 19S activator as the target for the development of a novel antitumor therapy.  相似文献   

11.
Pools of 26S and 20S proteasomes were studied in the spleen, liver, lung, and ascitic carcinoma Krebs-II of mouse. Western blotting demonstrated that the pool of 26S proteasomes in ascitic carcinoma Krebs-II was twice that in control lung cells and did not significantly differ by total 26S proteasome quantities from the spleen and liver. At the same time, the level of immune subunit LMP7 was 12 times lower in it compared to lung proteasomes and 4–5 times lower compared to spleen and liver proteasomes. Immune subunit LMP2 was undetectable by this technique in the ascitic carcinoma in contrast to the lung, spleen, and liver. All immune subunits in the studied organs and ascitic carcinoma Krebs-II are components of 26S but not 20S proteasomes.  相似文献   

12.
Groettrup M  Khan S  Schwarz K  Schmidtke G 《Biochimie》2001,83(3-4):367-372
When cells are stimulated with the cytokines IFN-gamma or TNF-alpha, the synthesis of three proteasome subunits LMP2 (beta1i), LMP7 (beta5i), and MECL-1 (beta2i) is induced. These subunits replace the three subunits delta (beta1), MB1 (beta5), and Z (beta2), which bear the catalytically active sites of the proteasome, during proteasome neosynthesis. The cytokine-induced exchanges of three active site subunits of a complex protease is unprecedented in biology and one may expect a strong functional driving force for this system to evolve. These cytokine-induced replacements of proteasome subunits are believed to favour the production of peptide ligands of major histocompatibility complex (MHC) class I molecules for the stimulation of cytotoxic T cells. Although the peptide production by constitutive proteasomes is able to maintain peptide-dependent MHC class I cell surface expression in the absence of LMP2 and LMP7, these subunits were recently shown to be pivotal for the generation or destruction of several unique epitopes. In this review we discuss the recent data on LMP2/LMP7/MECL-1-dependent epitope generation and the functions of each of these subunit exchanges. We propose that these subunit exchanges have evolved not only to optimize class I peptide loading but also to generate LMP2/LMP7/MECL-1-dependent epitopes in inflammatory sites which are not proteolytically generated in uninflamed tissues. This difference in epitope generation may serve to better stimulate T cells in the sites of an ongoing immune response and to avoid autoimmunity in uninflamed tissues.  相似文献   

13.
The dynamics of the expression of LMP7 and LMP2 proteasome subunits during embryonic and early postnatal development of rat spleen and liver was studied in comparison with the dynamics of chymotrypsin-like and caspase-like proteasome activities and expression of MHC (major histocompatibility complex) class I molecules. The distribution of LMP7 and LMP2 immune subunits in spleen and liver cells was also evaluated throughout development. The common tendency of both organs to increase the expression of both LMP7 and LMP2 subunits on the 21st postnatal day (P21) was found. However, the total proteasome level was shown to be constant. At certain developmental stages, the dynamics of immune subunits expression in the spleen and liver was different. While the gradual enhancement of both immune subunits was observed on P1, P18 and P21 in the spleen, the periods of gradual increase observed on E16 (the 16th embryonic day) and E18 gave way to a period of decrease in immune subunits on P5 in the liver. This level did not reliably change until P18 and increased on P21. The revealed changes were accompanied by an increase in chymotrypsin-like activity and a decrease in caspase-like activity in the spleen at P21 compared to the embryonic period. This indicates the increase in proteasome ability to form antigenic epitopes for MHC class I molecules. In the liver, both activities increased compared to the embryonic period by P21. The dynamics of caspase-like activity can be explained not only by the change of proteolytic constitutive and immune subunits, but also by additional regulatory mechanisms. Moreover, it was discovered that the increase in the expression of immune subunits during early spleen development is associated with the process of formation of white pulp by B- and T-lymphocytes enriched with immune subunits. In the liver, the increase in the level of immune subunits by P21 was also accompanied by an increase of their expression in hepatocytes. While the decrease of their level by P5 may be associated with the fact that the liver has lost its function as the primary lymphoid organ in the immune system by this time, as well as with the disappearance of B-lymphocytes enriched with immune proteasomes. In the spleen and the liver, MHC class I molecules were found during the periods of increased levels of proteasome immune subunits. On E21, the liver was enriched with neuronal nitric oxide synthase (nNOS); the level of nNOS decreased after birth and then increased by P18. This fact indicates the possibility of the induction of expression of the LMP7 and LMP2 immune subunits in hepatocytes via a signaling pathway involving nNOS. These results indicate that compared to the rat liver cells, splenic T cell immune response develops in rats starting around P19–P21. First, a T-area of white pulp is formed in the spleen during this period. Second, an increased level of immune proteasomes and MHC class I molecules in hepatocytes can ensure the formation of antigenic epitopes from foreign proteins and their delivery to the cell surface for subsequent presentation to cytotoxic T-lymphocytes.  相似文献   

14.
The cytotoxic T cell response to pathogens is usually directed against a few immunodominant epitopes, while other potential epitopes are either subdominant or not used at all. In C57BL/6 mice, the acute cytotoxic T cell response against lymphocytic choriomeningitis virus is directed against immunodominant epitopes derived from the glycoprotein (gp33-41) and the nucleoprotein (NP396-404), while the gp276-286 epitope remains subdominant. Despite extensive investigations, the reason for this hierarchy between epitopes is not clear. In this study, we show that the treatment of cells with IFN-gamma enhanced the presentation of gp33-41, whereas presentation of the gp276-286 epitope from the same glycoprotein was markedly reduced. Because proteasomes are crucially involved in epitope generation and because IFN-gamma treatment in vitro and lymphocytic choriomeningitis virus infection in vivo lead to a gradual replacement of constitutive proteasomes by immunoproteasomes, we investigated the role of proteasome composition on epitope hierarchy. Overexpression of the active site subunits of immunoproteasomes LMP2, LMP7, and MECL-1 as well as overexpression of LMP2 alone suppressed the presentation of the gp276-286 epitope. The ability to generate gp276-286-specific CTLs was enhanced in LMP2- and LMP7-deficient mice, and macrophages from these mice showed an elevated presentation of this epitope. In vitro digests demonstrated that fragmentation by immunoproteasomes, but not constitutive proteasomes led to a preferential destruction of the gp276 epitope. Taken together, we show that LMP2 and LMP7 can at least in part determine subdominance and shape the epitope hierarchy of CTL responses in vivo.  相似文献   

15.
Proteasomes are the major enzyme complexes for non-lysosomal protein degradation in eukaryotic cells. Mammals express two sets of catalytic subunits: the constitutive subunits β1, β2 and β5 and the immunosubunits LMP2 (β1i), MECL-1 (β2i) and LMP7 (β5i). The LMP7-propeptide (proLMP7) is required for optimal maturation of LMP2/MECL-1-containing precursors to mature immunoproteasomes, but can also mediate efficient integration into mixed proteasomes containing β1 and β2. In contrast, the β5-propeptide (proβ5) has been suggested to promote preferential integration into β1/β2-containing precursors, consequently favouring the formation of constitutive proteasomes. Here, we show that proβ5 predominantly promotes integration into LMP2/MECL-1-containing precursors in IFNγ-stimulated, LMP7-deficient cells and infected LMP7-deficient mice. This demonstrates that proβ5 does not direct preferential integration into β1/β2-containing precursors, but instead promotes the formation of mixed LMP2/MECL-1/β5 proteasomes under inflammatory conditions. Moreover, the propeptides substantially differ in their capacity to promote proteasome maturation, with proLMP7 showing a significantly higher chaperone activity as compared to proβ5. Increased efficiency of proteasome maturation mediated by proLMP7 is required for optimal MHC class I cell surface expression and is equally important as the catalytic activity of immunoproteasomes. Intriguingly, induction of LMP7 by infection not only results in rapid exchange of constitutive by immunosubunits, as previously suggested, but also increases the total proteasome abundance within the infected tissue. Hence our data identify a novel LMP7-dependend mechanism to enhance the activity of the proteasome system in infection, which is based on the high chaperone activity of proLMP7 and relies on accelerated maturation of active proteasome complexes.  相似文献   

16.
The assembly of eukaryotic 20 S proteasomes involves the formation of half-proteasomes where precursor beta-type subunits gather in position on an alpha-subunit ring, followed by the association of two half-proteasomes and beta-subunit processing. In vertebrates three additional beta-subunits (beta1i/LMP2, beta2i/MECL1, and beta5i/LMP7) can be synthesized and substituted for constitutive homologues (beta1/delta, beta2/Z, and beta5/X) to yield immunoproteasomes, which are important for generating certain antigenic peptides. We have shown previously that when all six beta-subunits are present, cooperative assembly mechanisms limit the diversity of proteasome populations. Specifically, LMP7 is incorporated preferentially over X into preproteasomes containing LMP2 and MECL1. We show here that the LMP7 propeptide is responsible for this preferential incorporation, and it also enables LMP7 to incorporate into proteasomes containing delta and Z. In contrast, the X propeptide restricts incorporation to proteasomes with delta and Z. Furthermore, we demonstrate that the LMP7 propeptide can function in trans when expressed on LMP2, and that its NH(2)-terminal and mid-regions are particularly critical for function. In addition to identifying a novel propeptide function, our results raise the possibility that one consequence of LMP7 incorporation into both immunoproteasomes and delta/Z proteasomes may be to increase the diversity of antigenic peptides that can be generated.  相似文献   

17.
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.  相似文献   

18.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

19.
Structure of the thymus in Wistar rats has been studied during antenatal and early postnatal periods of ontogenesis by means of histological, morphometric and electron microscopic methods. Theraputic doses of tetracycline hydrochloride have been administered during fetogenesis (15-20 days of pregnancy). An accelerated formation of the thymic structures, cellular blasttransformation in the thymic cortex and movement of lymphocytes from the cortex into medulla and increased secretory activity of epithelioreticulocytes have been revealed. The data obtained are considered as a display of the organ's immune response to tetracycline administration.  相似文献   

20.
Dynamics of the expression of MHC class I, immune proteasomes and proteasome regulators 19S, PA28, total proteasome pool and proteasome chymotrypsin-like activity in Walker 256 tumor after implantation into Brattleboro rats with the hereditary defect of arginine-vasopressin synthesis was studied. The tumor growth and regression in Brattleboro rats were accompanied by changes in the proteasome subunit level unlike the tumor growth in WAG rats with normal expression of arginine-vasopressin gene. In the tumor implanted into Brattleboro rats the immune proteasome level was maximal between days 14 and 17, when the tumor underwent regression. Conversely, the expression of proteasome regulators tended to decrease during this period. Immune proteasomes are known to produce antigen epitopes for MHC class I to be presented to CD8+ T lymphocytes. Enhanced expression of immune proteasomes coincided with the recovery of MHC class I expression, suggesting the efficient presentation of tumor antigens in Brattleboro rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号