首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally arising CD4(+)CD25(+)FoxP3(+) regulatory T cells (nTregs) have an essential role in maintenance of immune homeostasis and peripheral tolerance. Previously, we reported that conventional CD4(+) and CD8(+) T cells undergo p53-induced CD28-dependent apoptosis (PICA) when stimulated with a combination of immobilized anti-CD3 and anti-CD28 Abs, whereas nTregs expand robustly under the same conditions, suggesting that there is a differential survival mechanism against PICA between conventional T cells and nTregs. In this study, we demonstrate that TGF-β signaling is required for nTregs to survive PICA. Conversely, when an active form of exogenous TGF-β is present, conventional T cells become resistant to PICA and undergo robust expansion instead of apoptosis, with reduction of the proapoptotic protein Bim and FoxO3a. A substantial fraction of PICA-resistant T cells expressed IL-9 (T(H)9 cells). Moreover, the presence of IL-6 along with TGF-β led to the generation of T(H)17 cells from conventional T cells. Together, the data demonstrate a novel role for TGF-β in the homeostasis of regulatory T cells and effector T cell differentiation and expansion.  相似文献   

2.
Activation of CD4(+)CD25(+)Foxp3(+) naturally occurring regulatory T cells (nTregs) resulting in suppression of lung allergic responses requires interaction of MHC class I on nTregs and CD8. In the absence of CD8 (CD8(-/-) recipients), transferred nTregs restored airway hyperresponsiveness, eosinophilic inflammation, and IL-13 levels following allergen exposure. Enhancement of lung allergic responses was accompanied by reduced expression of Foxp3 and increased expression of IL-13 in the transferred nTregs. In CD8(-/-) recipients pretreated with glucocorticoid-induced TNFR-related protein-ligand Ab, the transferred nTregs maintained high levels of Foxp3 and did not result in altered lung responses. Thus, the regulatory function of nTregs can be subverted by reducing the expression of Foxp3 and following signaling through glucocorticoid-induced TNFR-related protein are converted nTregs into IL-13-producing CD4(+) T cells mediating lung allergic responses.  相似文献   

3.
Our previously reported phase I clinical trial with the allogeneic gene–modified tumor cell line RCC-26/CD80/IL-2 showed that vaccination was well tolerated and feasible in metastatic renal cell carcinoma (RCC) patients. Substantial disease stabilization was observed in most patients despite a high tumor burden at study entry. To investigate alterations in immune responses that might contribute to this effect, we performed an extended immune monitoring that included analysis of reactivity against multiple antigens, cytokine/chemokine changes in serum and determination of the frequencies of immune suppressor cell populations, including natural regulatory T cells (nTregs) and myeloid-derived suppressor cell subsets (MDSCs). An overall immune response capacity to virus-derived control peptides was present in 100% of patients before vaccination. Vaccine-induced immune responses to tumor-associated antigens occurred in 75% of patients, demonstrating the potent immune stimulatory capacity of this generic vaccine. Furthermore, some patients reacted to peptide epitopes of antigens not expressed by the vaccine, showing that epitope-spreading occurred in vivo. Frequencies of nTregs and MDSCs were comparable to healthy donors at the beginning of study. A significant decrease of nTregs was detected after vaccination (p = 0.012). High immune response rates, decreased frequencies of nTregs and a mixed T helper 1/T helper 2 (TH1/TH2)-like cytokine pattern support the applicability of this RCC generic vaccine for use in combination therapies.  相似文献   

4.
Apolipoprotein A-I (apoA-I), the major protein component of serum high-density lipoprotein, exhibits anti-inflammatory activity in atherosclerosis. In this study, we demonstrate that apoA-I inhibits DC differentiation and maturation. DC differentiated from monocytes in the presence of apoA-I showed a decreased expression of surface molecules such as CD1a, CD80, CD86, and HLA-DR. In addition, these DC exhibited decreased endocytic activity and weakened allogeneic T-cell activation. During DC differentiation in the presence of apoA-I, PGE(2) and IL-10, which are known to be DC differentiation inhibitors and/or modulators of DC function, were produced at remarkable rates, whereas IL-12 production in the cells after stimulation with CD40 mAb and IFN-gamma was significantly decreased in comparison with the control DC. T cells stimulated by apoA-I-pretreated DC produced significantly low levels of IFN-gamma, and apoA-I inhibited cross-talk between DC and NK cells, in terms of IL-12 and IFN-gamma production. Therefore, apoA-I appears to play an important role in modulating both innate immune response and inflammatory response. The novel inhibitory function of apoA-I on DC differentiation and function may facilitate the development of new therapeutic interventions in inflammatory diseases.  相似文献   

5.
Naturally occurring CD4(+)CD25(+)Foxp3(+) T regulatory cells (nTregs) regulate lung allergic responses through production of IL-10 and TGF-β. nTregs from CD8(-/-) mice failed to suppress lung allergic responses and were characterized by reduced levels of Foxp3, IL-10, and TGF-β, and high levels of IL-6. Administration of anti-IL-6 or anti-IL-6R to wild-type recipients prior to transfer of CD8(-/-) nTregs restored suppression. nTregs from IL-6(-/-) mice were suppressive, but lost this capability if incubated with IL-6 prior to transfer. The importance of CD8 in regulating the production of IL-6 in nTregs was demonstrated by the loss of suppression and increases in IL-6 following transfer of nTregs from wild-type donors depleted of CD8(+) cells. Transfer of nTregs from CD8(-/-) donors reconstituted with CD8(+) T cells was suppressive, and accordingly, IL-6 levels were reduced. These data identify the critical role of CD8-T regulatory cell interactions in regulating the suppressive phenotype of nTregs through control of IL-6 production.  相似文献   

6.
CD4+ T cell activation is controlled by signaling through the T cell receptor in addition to various co-receptors, and is also affected by their interactions with effector and regulatory T cells in the microenvironment. Inflammatory bowel diseases (IBD) are caused by the persistent activation and expansion of auto-aggressive CD4+ T cells that attack intestinal epithelial cells. However, the molecular basis for the persistent activation of CD4+ T cells in IBD remains unclear. In this study, we investigated how the CD98 heavy chain (CD98hc, Slc3a2) affected the development of colitis in an experimental animal model. Transferring CD98hc-deficient CD4+CD25 T cells into Rag2−/− mice did not cause colitis accompanied by increasing Foxp3+ inducible regulatory T cells. By comparison, CD98hc-deficient naturally occurring regulatory T cells (nTregs) had a decreased capability to suppress colitis induced by CD4+CD25 T cells, although CD98hc-deficient mice did not have a defect in the development of nTregs. Blocking CD98hc with an anti-CD98 blocking antibody prevented the development of colitis. Our results indicate that CD98hc regulates the expansion of autoimmune CD4+ T cells in addition to controlling nTregs functions, which suggests the CD98hc as an important target molecule for establishing strategies for treating colitis.  相似文献   

7.
Epicubenol and 19-hydroxyferruginol (Ferruginol) are sesquiterpenes isolated from the black heartwood of Cryptomeria japonica. Dendritic cells (DC) are specialized antigen-presenting cells that monitor the antigenic environment and activate na?ve T cells. The role of DC is not only to sense danger but also to tolerize the immune system to antigens encountered in the absence of maturation/inflammatory stimuli. In this study, we attempted to investigate the effects of Epicubenol and Ferruginol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days under standard conditions, followed by another 2 days with Epicubenol or Ferruginol. The expression levels of CD1a, CD83, and HLA-DR as expressed by mean fluorescence intensity (MFI) on Epicubenol-primed DC or Ferruginol-primed DC were enhanced. Allogeneic Epicubenol-primed DC or Ferruginol-primed DC co-cultured with na?ve T cells at 1:5 ratio, secreted IL-10 and TGF-beta, but little IL-4. Moreover, T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and na?ve T cells at 1:5 ratio suppressed the proliferation of autologous T cells at Treg cells: Ttarget cells and this suppression of proliferation was inhibited by anti-IL-10 mAb. The expression of FoxP3 mRNA on T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and na?ve T cells was lower. From these results, Epicubenol and Ferruginol may induce IL-10-producing Treg 1 cells from na?ve T cells by modulating DC function. It seems that Epicubenol and Ferruginol appear to be a target for tolerance after transplantation and in autoimmune diseases.  相似文献   

8.
IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2cre). When IL-2cre mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2cre mice that carry the luciferase reporter showed concentrated localization of luciferase+ cells in Peyer’s patches. These cells were not observed in new born mice but appeared within 3 days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP+ cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs.  相似文献   

9.
Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions.  相似文献   

10.
Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-α and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.  相似文献   

11.
Two prominent anti-inflammatory mechanisms involved in controlling HSV-1-induced corneal immunopathology (stromal keratitis or SK) are the production of the cytokine IL-10 and the activity of natural regulatory T cells (nTregs). It is not known whether, under in vivo conditions, IL-10 and nTregs influence the corneal pathology independently or in concert. In the current study using wild-type and IL-10(-/-) animals, we have assessed the activity of nTregs in the absence of IL-10 both under in vitro and in vivo conditions. The IL-10(-/-) animals depleted of nTregs before ocular infection showed more severe SK lesions as compared with the undepleted IL-10(-/-) animals. In addition, nTregs purified from naive WT and IL-10(-/-) animals were equally able to suppress the proliferation and the cytokine production from anti-CD3-stimulated CD4(+)CD25(-) T cells in vitro. Furthermore, intracellular cytokine staining results indicated that nonregulatory cells expressing B220 and CD25 markers were the major IL-10-producing cell types in the lymphoid tissues of HSV-infected mice. In contrast, in the infected corneas, cells with the CD11b(+)Gr1(+) phenotype along with a minor population of Foxp3(-)CD4(+) and a few F4/80(+) cells produced IL-10. Our current investigations indicate that at least two independent anti-inflammatory mechanisms are involved in limiting the corneal lesions in SK, both of which may need to be modulated to control SK therapeutically.  相似文献   

12.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

13.
Naturally occurring CD4+CD25+ regulatory T cells (nTregs) play a pivotal role in the maintenance of self-tolerance and immune homeostasis. To gain insight into the mechanism of action of nTregs in pathological and physiological immune responses, it is important to analyze bioactive molecules that modulate the maintenance and function of nTregs. From a library of bioactive lipids, we obtained lysophosphatidylcholine (LPC) as a molecule that enhanced the Foxp3 expression and suppressive function of human nTregs significantly in comparison with those of DMSO-treated nTregs (control). The expression levels of TGF-β1 mRNA and protein in LPC-treated nTregs were significantly higher than those in control nTregs. After treatment with anti-TGF-β1 antibody, the increases in Foxp3 expression and the suppressive properties of LPC-treated nTregs returned to the levels observed in control nTregs. These findings indicate that LPC enhances Foxp3 expression and the suppressive function of nTregs through TGF-β1 produced by nTregs themselves. Experimental knockdown of G2A and GPR4 showed that this LPC-induced TGF-β1 expression in nTregs was due to G2A signaling, and did not involve GPR4. Moreover, JNK was a major contributor to LPC-induced TGF-β1 expression in nTregs, although LPC activated MAPKs including ERK1/2, p38 MAPK, and JNK via G2A. LPC is a bioactive lysolipid highly abundant in the circulation. Therefore, LPC may contribute to the maintenance and function of human nTregs in vivo.  相似文献   

14.
15.
Interleukin (IL)-32 has been associated with a variety of inflammatory diseases including rheumatoid arthritis, vasculitis and Crohn’s disease. We have previously reported that IL-32γ, the IL-32 isoform with the highest biological activity, could act as an immune modulator through regulation of dendritic cell (DC) functions in immune responses. Cell locomotion is crucial for induction of an effective immune response. In this study, we investigated the effect and underlying mechanisms of IL-32γ on recruitment of T cells. IL-32γ upregulated the expression of several chemokines including CCL2, CCL4, and CCL5 in the DCs. In particular, IL-32γ significantly increased CCL5 expression in a dose-dependent manner. Treatment with JNK and NF-κB inhibitors suppressed IL-32γ-induced CCL5 expression in DCs, indicating that IL-32γ induced CCL5 production through the JNK and NF-κB pathways. Furthermore, supernatants from IL-32γ-treated DCs showed chemotactic activities controlling migration of activated CD4+ and CD8+ T cells, and these activities were suppressed by addition of neutralizing anti-CCL5 antibody. These results show that IL-32γ effectively promotes migration of activated T cells via CCL5 production in DCs. The chemotactic potential of IL-32γ may explain the pro-inflammatory effects of IL-32 and the pathologic role of IL-32 in immune disorders such as rheumatoid arthritis.  相似文献   

16.
17.
Every person harbors a population of potentially self-reactive lymphocytes controlled by tightly balanced tolerance mechanisms. Failures in this balance evoke immune activation and autoimmunity. In this study, we investigated the contribution of self-reactive CD8(+) T lymphocytes to chronic pulmonary inflammation and a possible role for naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (nTregs) in counterbalancing this process. Using a transgenic murine model for autoimmune-mediated lung disease, we demonstrated that despite pulmonary inflammation, lung-specific CD8(+) T cells can reside quiescently in close proximity to self-antigen. Whereas self-reactive CD8(+) T cells in the inflamed lung and lung-draining lymph nodes downregulated the expression of effector molecules, those located in the spleen appeared to be partly Ag-experienced and displayed a memory-like phenotype. Because ex vivo-reisolated self-reactive CD8(+) T cells were very well capable of responding to the Ag in vitro, we investigated a possible contribution of nTregs to the immune control over autoaggressive CD8(+) T cells in the lung. Notably, CD8(+) T cell tolerance established in the lung depends only partially on the function of nTregs, because self-reactive CD8(+) T cells underwent only biased activation and did not acquire effector function after nTreg depletion. However, although transient ablation of nTregs did not expand the population of self-reactive CD8(+) T cells or exacerbate the disease, it provoked rapid accumulation of activated CD103(+)CD62L(lo) Tregs in bronchial lymph nodes, a finding suggesting an adaptive phenotypic switch in the nTreg population that acts in concert with other yet-undefined mechanisms to prevent the detrimental activation of self-reactive CD8(+) T cells.  相似文献   

18.
Oxidized LDL (ox-LDL) activates dendritic cells (DCs), thereby initiating inflammation responses in atherosclerosis, yet the modulatory mechanisms remain unclear. MicroRNAs (miRNAs) are important regulators for DC functions. This study evaluated the regulation by miRNAs of the ox-LDL-induced DC immune response. In CD11c+ DCs from ApoE-deficient mice with hyperlipidemia, microRNA miR-181a was significantly up-regulated. In cultured bone marrow-derived DCs (BMDCs), ox-LDL promoted DC maturation and up-regulated miR-181a expression. Abundance of miR-181a attenuated ox-LDL-induced CD83 and CD40 expression, inhibited the secretion of interleukin (IL)-6 and TNF-α, and up-regulated IL-10, an important anti-inflammatory cytokine that was inhibited by ox-LDL. Inhibition of the endogenous miR-181a reversed the effects on CD83 and CD40 as well as the effects on IL-6 and TNF-α. The putative target genes of miR-181a were evaluated by gene ontology assessment, and the c-Fos-mediated inflammation pathway was identified. miR-181a targeted the 3′ untranslated region of c-Fos mRNA by luciferase experiments. Thus, abundance of miR-181a reduced c-Fos protein, whereas inhibition of miR-181a increased c-Fos protein in BMDCs. We therefore suggest that miR-181a attenuates ox-LDL-stimulated immune inflammation responses by targeting c-Fos in DCs.  相似文献   

19.
In this study, we show that Mycobacterium avium subsp. Paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-α, and IL-1β) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naïve T cells to polarized CD4+ and CD8+ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. Paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of CD4+ and CD8+ T cells. [BMB Reports 2014; 47(2): 115-120]  相似文献   

20.
Circulating human CD4(+)CD25(++)CD127(-)FOXP3(+) T cells with a persistent demethylated regulatory T cell (Treg)-specific demethylated region Foxp3 gene are considered natural Tregs (nTregs). We have shown that it is possible to identify functional Ag-reactive nTregs cells for a range of different common viral and vaccination Ags. The frequency of these Ag-reactive nTregs within the nTreg population is strikingly similar to the frequency of Ag-reactive T effector cells within the CD4(+) T cell population. The Ag-reactive nTregs could be recognized with great specificity by induction of CD154 expression. These CD154(+) Ag-reactive nTregs showed a memory phenotype and shared all phenotypical and functional characteristics of nTregs. The isolated CD154(+) nTregs could be most efficiently expanded by specific antigenic stimulation, while their Ag-reactive suppressive activity was maintained. After an in vivo booster Ag challenge, the ratio of Ag-reactive T cells to Ag-reactive Tregs increased substantially, which could be attributed to the rise in effector T cells but not Tregs. In conclusion, the nTreg population mirrors the effector T cell population in the frequency of Ag-reactive T cells. Isolation and expansion of functional Ag-reactive nTregs is possible and of potential benefit for specific therapeutic goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号