首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterised by hypogammaglobulinaemia and antibody deficiency to T dependent and independent antigens. Patients suffer from recurrent respiratory infections and poor response to vaccination. Although the underlying molecular defect is unknown, most CVID patients show impaired late B cell differentiation. We investigated B cell differentiation and immunoglobulin secretion induced by two different stimuli: TLR9 specific ligand (CpG-ODN) and anti-CD40 combined with IL21. The contribution of BCR signalling (anti-IgM stimulation) was also evaluated. B cells from CVID patients produced low levels of IgG and IgA in response to both kinds of stimuli that was not restored by anti-IgM. Production of IgM was conserved when cells were stimulated with anti-CD40 and IL21. These results point to a wide signalling defect in B lymphocytes from CVID patients that may be related to their hypogammaglobulinaemia and poor response to vaccination.  相似文献   

2.
Nontypeable Haemophilus influenzae (NTHi) is the etiological agent most frequently associated with bacterial exacerbations of chronic obstructive pulmonary disease (COPD). The present work shows that NTHi strains induced in primary normal human bronchial epithelial cells (NHBE) a cytokine/chemokine response in which CCL-5 and CXCL-10 were predominant. Production of both cytokines was inhibited by an anti-TLR3 monoclonal antibody (mAb) in a dose-dependent manner, but not by control human IgG4 antibodies, thus suggesting a TLR3-dependency of the NTHi stimulation. BEAS-2B, an immortalized human bronchial epithelial cell line, also showed a similar NTHi-induced response that was inhibited by the anti-TLR3 mAb. A BEAS-2B cell line stably expressing TLR3 siRNA showed significantly reduced cytokine/chemokine responses to NTHi stimulation, confirming the role of TLR3 in the response. These results indicate that TLR3 is a key component in the response of human bronchial epithelial cells to NTHi, and suggest that cognate neutralizing mAbs might be a useful therapeutic tool to regulate the inflammatory response.  相似文献   

3.
Nasopharyngeal carriage studies are needed to monitor changes in important bacterial pathogens in response to vaccination and antibiotics. Commercial swab transport followed by transfer to skim milk tryptone glucose glycerol broth for frozen storage is an option for studies of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.  相似文献   

4.
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.  相似文献   

5.
6.
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.  相似文献   

7.
Chlamydia pneumoniae is a respiratory pathogen involved in the onset of chronic inflammatory pathologies. Dendritic cells (DC), are major players in spreading of C. pneumoniae from the lungs, a crucial step leading to disseminated infections. Less is known concerning modulation of DC functions consequent to encounter with the bacterium. In order to address this aspect, human monocyte-derived (MD)DC were infected with C. pneumoniae. After internalization bacterial counts increased in MDDC, as well as the expression of CPn1046, a gene involved in bacterial metabolism, with a peak 48 h after the infection. Infected MDDC switched to the mature stage, produced IL-12p70, IL-1β, IL-6, and IL-10, and drove a mixed Type 1/Type 17 polarization. Intracellular pathways triggered by C. pneumoniae involved Toll-like receptor (TLR) 2. Indeed, TLR2 was activated by C. pneumoniae in transfected HEK 293 cells, and C. pneumoniae-mediated phosphorylation of ERK1/2 was inhibited by an anti-TLR2 antibody in MDDC. When an ERK1/2 inhibitor was used, IL-12p70 and IL-10 release by MDDC was reduced and T cell polarization shifted towards a Type 2 profile. Overall, our findings unveiled the role played by TLR2 and ERK1/2 induced by C. pneumoniae to affect DC functions in a way that contributes to a Type 1/Type 17 pro-inflammatory response.  相似文献   

8.

Background

Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Methods

Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured.

Results

In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice.

Conclusion

This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.  相似文献   

9.
Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.  相似文献   

10.
Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%–100%) for N. meningitidis, 97.8% (85.5%–99.9%) for S. pneumoniae, and 66.7% (9.4%–99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.  相似文献   

11.

Background

Human nasopharynx is often colonized by potentially pathogenic bacteria. Gene polymorphisms in mannose-binding lectin (MBL), toll-like receptor (TLR) 2 and TLR4 have been reported. The present study aimed to investigate possible association between nasopharyngeal bacterial colonization and gene polymorphisms of MBL, TLR2 and TLR4 in healthy infants.

Methodology/Principal Findings

From August 2008 to June 2010, 489 nasopharyngeal swabs and 412 blood samples were taken from 3-month-old healthy Finnish infants. Semi-quantitative culture was performed and pyrosequencing was used for detection of polymorphisms in MBL structural gene at codons 52, 54, and 57, TLR2 Arg753Gln and TLR4 Asp299Gly. Fifty-nine percent of subjects were culture positive for at least one of the four species: 11% for Streptococcus pneumoniae, 23% for Moraxella catarrhalis, 1% for Haemophilus influenzae and 25% for Staphylococcus aureus. Thirty-two percent of subjects had variant types in MBL, 5% had polymorphism of TLR2, and 18% had polymorphism of TLR4. Colonization rates of S. pneumoniae and S. aureus were significantly higher in infants with variant types of MBL than those with wild type (p = .011 and p = .024). Colonization rates of S. aureus and M. catarrhalis were significantly higher in infants with polymorphisms of TLR2 and of TLR4 than those without (p = .027 and p = .002).

Conclusions

Our study suggests that there is an association between nasopharyngeal bacterial colonization and genetic variation of MBL, TLR2 and TLR4 in young infants. This finding supports a role for these genetic variations in susceptibility of children to respiratory infections.  相似文献   

12.

Background

Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae are bacteria present in the nasopharynx as part of normal flora. The ecological equilibrium in the nasopharynx can be disrupted by the presence of antibiotics.

Methodology/Principal Findings

A computerized two-compartment pharmacodynamic model was used to explore β-lactam effects on the evolution over time of a bacterial load containing common pharyngeal isolates by simulating free serum concentrations obtained with amoxicillin (AMX) 875 mg tid, amoxicillin/clavulanic acid (AMC) 875/125 mg tid and cefditoren (CDN) 400 mg bid regimens over 24 h. Strains and MICs (µg/ml) of AMX, AMC and CDN were: S. pyogenes (0.03, 0.03 and 0.015), S. pneumoniae (2, 2 and 0.25), a β-lactamase positive H. influenzae (BL+; >16, 2 and 0.06) and a β-lactamase positive AMC-resistant H. influenzae (BLPACR, >16, 8 and 0.06). Mixture of identical 1∶1∶1∶1 volumes of each bacterial suspension were prepared yielding an inocula of ≈4×106 cfu/ml. Antibiotic concentrations were measured both in bacterial and in bacteria-free antibiotic simulations. β-lactamase production decreased AMX concentrations and fT>MIC against S. pneumoniae (from 43.2% to 17.7%) or S. pyogenes (from 99.9% to 24.9%), and eradication was precluded. The presence of clavulanic acid countered this effect of co-pathogenicity, and S. pyogenes (but not BL+ and S. pneumoniae) was eradicated. Resistance of CDN to TEM β-lactamase avoided this co-pathogenicity effect, and CDN eradicated S. pyogenes and H. influenzae strains (fT>MIC >58%), and reduced in 94% S. pneumoniae counts (fT>MIC ≈25%).

Conclusions/Significance

Co-pathogenicity seems to be gradual since clavulanic acid countered this effect for strains very susceptible to AMX as S. pyogenes but not for strains with AMX MIC values in the limit of susceptibility as S. pneumoniae. There is a potential therapeutic advantage for β-lactamase resistant cephalosporins with high activity against streptococci.  相似文献   

13.

Background

Dysfunctional innate responses of alveolar macrophages to nontypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae contribute to morbidity in chronic obstructive pulmonary disease (COPD). Our earlier studies discovered impaired COPD alveolar macrophage responses to Toll-like receptor (TLR) ligands of nontypeable H. influenzae and provide rationale for further evaluation of TLR signaling. While the role of TLR single nucleotide polymorphisms is increasingly recognized in inflammatory diseases, TLR single nucleotide polymorphisms in COPD have only recently been explored. We hypothesized that specific TLR polymorphisms are associated with dysfunctional innate immune COPD alveolar macrophage responses and investigated polymorphisms of TLR2(Arg753Gln), TLR4(Thr399Ile; Asp299Gly), and TLR9(T1486C; T1237C).

Methods

DNA was purified from cells of 1) healthy nonsmokers (n = 20); 2) COPD ex-smokers (n = 83); 3) COPD active smokers (n = 93). DNA amplifications (polymerase chain reaction) were performed for each SNP. Alveolar macrophages from each group were incubated with nontypeable H. influenzae, M. catarrhalis and S. pneumoniae. Cytokine induction of macrophage supernatants was measured and the association with TLR single nucleotide polymorphism expression was determined.

Results

No significant inter-group differences in frequency of any TLR SNP existed. However both TLR9 single nucleotide polymorphisms were expressed in high frequency. Among COPD ex-smokers, diminished IL-8 responsiveness to nontypeable H. influenzae, M. catarrhalis and S. pneumoniae was strongly associated with carriage of TLR9(T1237C) (p = 0.02; p = 0.008; p = 0.02), but not TLR9(T1486C). Carriage of TLR9(T1237C), but not TLR9(T1486C), correlated with diminished FEV1%predicted (p = 0.037).

Conclusion

Our results demonstrate a notable association of TLR9(T1237C) expression with dysfunctional innate alveolar macrophage responses to respiratory pathogens and with severity of COPD.  相似文献   

14.
Innate-like B lymphocytes play an important role in innate immunity in periodontal disease through Toll-like receptor (TLR) signaling. However, it is unknown how innate-like B cell apoptosis is affected by the periodontal infection-associated innate signals. This study is to determine the effects of two major TLR ligands, lipopolysaccharide (LPS) and CpG-oligodeoxynucleotides (CpG-ODN), on innate-like B cell apoptosis. Spleen B cells were isolated from wild type (WT), TLR2 knockout (KO) and TLR4 KO mice and cultured with E. coli LPS alone, P. gingivalis LPS alone, or combined with CpG-ODN for 2 days. B cell apoptosis and expressions of specific apoptosis-related genes were analyzed by flow cytometry and real-time PCR respectively. P. gingivalis LPS, but not E. coli LPS, reduced the percentage of AnnexinV+/7-AAD- cells within IgMhighCD23lowCD43-CD93- marginal zone (MZ) B cell sub-population and IgMhighCD23lowCD43+CD93+ innate response activator (IRA) B cell sub-population in WT but not TLR2KO or TLR4KO mice. CpG-ODN combined with P. gingivalis LPS further reduced the percentage of AnnexinV+/7-AAD- cells within MZ B cells and IRA B cells in WT but not TLR2 KO or TLR4 KO mice. Pro-apoptotic CASP4, CASP9 and Dapk1 were significantly down-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT but not TLR2 KO or TLR4 KO mice. Anti-apoptotic IL-10 was significantly up-regulated in P. gingivalis LPS- and CpG-ODN-treated B cells from WT and TLR2 KO but not TLR4 KO mice. These results suggested that both TLR2 and TLR4 signaling are required for P. gingivalis LPS-induced, CpG-ODN-enhanced suppression of innate-like B cell apoptosis.  相似文献   

15.
Haemophilus influenzae is an important human pathogen. A number of complete genome sequences of various haemophili are available; however, functional studies have been limited by the lack of an effective shuttle vector which functions in all strains. Here, we have constructed a shuttle vector, pEJ6, which transfers genes between Escherichia coli and H. influenzae and H. parainfluenzae. The vector contains an origin of replication from pLS88 which is functional in E. coli and H. influenzae. In addition it contains an RP4 mobilisation region. The vector can be introduced by electroporation and conjugation into capsulate and non-typeable H. influenzae and is functional for allelic replacement and mutant complementation. The vector will be useful for investigating gene function in Haemophilus spp.  相似文献   

16.

Background

Bacterial meningitis is associated with significant burden in Brazil. In 2010, both 10-valent pneumococcal conjugate vaccine and meningococcal capsular group C conjugate vaccine were introduced into the routine vaccination schedule. Haemophilus influenzae type b vaccine was previously introduced in 1999. This study presents trends in demographics, microbiological characteristics and seasonality patterns of bacterial meningitis cases in Brazil from 2000 to 2010.

Methods and Findings

All meningitis cases confirmed by clinical and/or laboratory criteria notified to the national information system for notifiable diseases between 2000 and 2010 were analyzed. Proportions of bacterial meningitis cases by demographic characteristics, criteria used for confirmation and etiology were calculated. We estimated disease rates per 100,000 population and trends for the study period, with emphasis on H. influenzae, N. meningitidis and S. pneumoniae cases. In the decade, 341,805 cases of meningitis were notified in Brazil. Of the 251,853 cases with defined etiology, 110,264 (43.8%) were due to bacterial meningitis (excluding tuberculosis). Of these, 34,997 (31.7%) were due to meningococcal disease. The incidence of bacterial meningitis significantly decreased from 3.1/100,000 population in 2000–2002 to 2.14/100,000 in 2009–2010 (p<0.01). Among cases of meningococcal disease, the proportion of those associated with group C increased from 41% in 2007 to 61.7% in 2010, while the proportion of group B disease progressively declined. Throughout the study period, an increased number of cases occurred during winter.

Conclusions

Despite the reduction in bacterial meningitis incidence during the last decade, it remains a significant healthcare issue in Brazil. Meningococcal disease is responsible for the majority of the cases with group C the most common capsular type. Our study demonstrates the appropriateness of introduction of meningococcal vaccination in Brazil. Furthermore, this study provides a baseline for future evaluation of the impact of the vaccines introduction in Brazil and changes in disease epidemiology.  相似文献   

17.
Bacterial isolates are often transported between laboratories for research and diagnostic purposes. Silica desiccant packets (SDPs), which are inexpensive and do not require freezing, were evaluated for storage and recovery of bacterial isolates. Conditions such as inoculum size, swab type and temperature of storage were investigated using ten Streptococcus pneumoniae isolates. The optimized protocol was then tested using 49 additional S. pneumoniae isolates representing 40 serogroups. Overall, S. pneumoniae growth was considered satisfactory (>100 colony forming units) for 98/109 (89.9%) and 20/20 (100%) swabs after 14 days at room temperature or 28 days at 4° C, respectively. Storage in SDPs did not impact on the ability of S. pneumoniae isolates to be subsequently serotyped. When the survival of nine other clinically relevant bacterial species was tested, seven were viable after 28 days at room temperature, the exceptions being Neisseria gonorrhoeae and Haemophilus influenzae. SDPs are suitable for transport and short-term storage of bacterial species including S. pneumoniae.  相似文献   

18.
In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specific real-time (qPCR) systems were developed based on the 16S rRNA gene sequences from culturable representatives of both groups. The number of DNA targets from three different groups, i.e. Holophagae (Acidobacteria group 8) and Luteolibacter/Prosthecobacter and unclassified Verrucomicrobiaceae subdivision 1, was determined in DNA extracts from different leek (Allium porrum) rhizosphere soil compartments and from bulk soil with the aim to determine the distribution of the three bacterial groups in the plant-soil ecosystem. The specificity of the designed primers was evaluated in three steps. First, in silico tests were performed which demonstrated that all designed primers 100% matched with database sequences of their respective groups, whereas lower matches with other non-target bacterial groups were found. Second, PCR amplification with the different primer sets was performed on genomic DNA extracts from target and from non-target bacteria. This test demonstrated specificity of the designed primers for the target groups, as single amplicons of expected sizes were found only for the target bacteria. Third, the qPCR systems were tested for specific amplifications from soil DNA extracts and 48 amplicons from each primer system were sequenced. All sequences were > 97% similar to database sequences of the respective target groups. Estimated cell numbers based on Holophagae-, Luteolibacter/Prosthecobacter- and unclassified Verrucomicrobiaceae subdivision 1-specific qPCRs from leek rhizosphere compartments and bulk soils demonstrated higher preference for one or both rhizosphere compartments above bulk soil for all three bacterial groups.  相似文献   

19.
Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae are major bacterial agents of meningitis. They each bind the 37/67-kDa laminin receptor (LamR) via the surface protein adhesins: meningococcal PilQ and PorA, H. influenzae OmpP2 and pneumococcal CbpA. We have previously reported that a surface-exposed loop of the R2 domain of CbpA mediates LamR-binding. Here we have identified the LamR-binding regions of PorA and OmpP2. Using truncated recombinant proteins we show that binding is dependent on amino acids 171–240 and 91–99 of PorA and OmpP2, respectively, which are predicted to localize to the fourth and second surface-exposed loops, respectively, of these proteins. Synthetic peptides corresponding to the loops bound LamR and could block LamR-binding to bacterial ligands in a dose dependant manner. Meningococci expressing PorA lacking the apex of loop 4 and H. influenzae expressing OmpP2 lacking the apex of loop 2 showed significantly reduced LamR binding. Since both loops are hyper-variable, our data may suggest a molecular basis for the range of LamR-binding capabilities previously reported among different meningococcal and H. influenzae strains.  相似文献   

20.

Background

Accurate data on childhood pneumonia aetiology are essential especially from regions where mortality is high, in order to inform case-management guidelines and the potential of prevention strategies such as bacterial conjugate vaccines. Yield from blood culture is low, but lung aspirate culture provides a higher diagnostic yield. We aimed to determine if diagnostic yield could be increased further by polymerase chain reaction (PCR) detection of bacteria (Streptococcus pneumoniae and Haemophilus influenzae b) and viruses in lung aspirate fluid.

Methods

A total of 95 children with radiological focal, lobar or segmental consolidation had lung aspirate performed and sent for bacterial culture and for PCR for detection of bacteria, viruses and Pneumocystis jirovecii. In children with a pneumococcal aetiology, pneumococcal bacterial loads were calculated in blood and lung aspirate fluid.

Results

Blood culture identified a bacterial pathogen in only 8 patients (8%). With the addition of PCR on lung aspirate samples, causative pathogens (bacterial, viral, pneumocystis) were identified singly or as co-infections in 59 children (62%). The commonest bacterial organism was S.pneumoniae (41%), followed by H. influenzae b (6%), and the commonest virus identified was adenovirus (16%), followed by human bocavirus (HBoV) (4%), either as single or co-infection.

Conclusions

In a select group of African children, lung aspirate PCR significantly improves diagnostic yield. Our study confirms a major role of S.pneumoniae and viruses in the aetiology of childhood pneumonia in Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号