首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants do not produce viable pollen. Fertility in plants with CMS can be recovered by nuclear restorer genes. Most restorer genes cloned so far are members of the pentatricopeptide repeat (PPR) protein family. The objective of our study was to use the CMS-D8 and restoration (Rf2) system of cotton (Gossypium hirsutum L.) to develop more DNA markers for the Rf2 gene. In a backcross population with 112 plants, segregation of male fertility was 1 fertile : 1 sterile. Three new RAPD markers were identified for Rf2, one of which was converted to a CAPS marker. In addition, 2 AFLP markers and 1 SSR marker were identified to be linked to the fertility restorer gene (Rf2). PPR motif primers were designed based on the conserved PPR motifs and used in combination with AFLP primers to test the mapping population, and 1 PPR-AFLP marker was identified. A linkage map with 9 flanking markers including 1 from a previous study was constructed.  相似文献   

2.
3.
4.
5.

Key message

Over-production of functional PSK-α in Arabidopsis caused increases in both plant cell growth and biomass and induced male sterility by regulating cell wall development.

Abstract

Phytosulfokine-α (PSK-α) is a novel disulfated pentapeptide hormone that is involved in promoting plant cell growth. Although a role for PSK-α in stimulating protoplast expansion has been suggested, how PSK-α regulates cell growth in planta remains poorly understood. In this study, we found that overexpression of the normal PSK-α precursor gene AtPSK4, which resulted in high levels of PSK-α, caused longer roots and larger leaves with enlarged cells. As expected, these changes were not observed in transgenic plants overexpressing mutated AtPSK4, which generated unsulfated PSK-α. These findings confirmed the role of PSK-α in promoting plant cell growth. Furthermore, we found that overexpressing AtPSK4, but not mutated AtPSK4, induced a phenotype of male sterility that resulted from the failure of fibrous cell wall development in the endothecium. In addition, overexpressing AtPSK4 enhanced expression of a number of genes encoding expansins, which are involved in cell wall loosening. Accordingly, in addition to its role in cell growth, we propose a novel function for PSK-α signaling in the modulation of plant male sterility via regulation of cell wall development.
  相似文献   

6.
7.
Summary The inheritance of a partial male fertile phenotype in somatic hybrid B. napus plants that carried novel mtDNA was investigated over five backcross generations to B. napus Triton. The recurrent parent and the original somatic hybrid both contained chloroplasts resistant to atrazine. The F1 population contained mainly plants that were partial fertile, and some of the plants differed in mtDNA. The partial fertility predominated in the progeny of each backcross generation, but fully male sterile and fertile plants were also obtained. However, the sterility/fertility of these latter plants was not stable; both the fully male sterile and the male fertile plants produced progeny that were again predominantly partial male fertile. This pattern of predominant partial fertility but occasional sterile and fertile plants persisted in different nuclear backgrounds. Neither the male sterility nor the male fertility could be fixed and made stable. Test crosses indicated that restorer genes were probably not associated with appearance of male fertile plants. The evidence indicates that the behavior of the partial male fertility is cytoplasmic, and probably controlled by the chondriome.  相似文献   

8.

Key message

A comparative genetics approach allowed to precisely determine the map position of the restorer gene Rfp3 in rye and revealed that Rfp3 and the restorer gene Rfm1 in barley reside at different positions in a syntenic 4RL/6HS segment.

Abstract

Cytoplasmic male sterility (CMS) is a reliable and striking genetic mechanism for hybrid seed production. Breeding of CMS-based hybrids in cereals requires the use of effective restorer genes as an indispensable pre-requisite. We report on the fine mapping of a restorer gene for the Pampa cytoplasm in winter rye that has been tapped from the Iranian primitive rye population Altevogt 14160. For this purpose, we have mapped 41 gene-derived markers to a 38.8 cM segment in the distal part of the long arm of chromosome 4R, which carries the restorer gene. Male fertility restoration was comprehensively analyzed in progenies of crosses between a male-sterile tester genotype and 21 recombinant as well as six non-recombinant BC4S2 lines. This approach allowed us to validate the position of this restorer gene, which we have designated Rfp3, on chromosome 4RL. Rfp3 was mapped within a 2.5 cM interval and cosegregated with the EST-derived marker c28385. The gene-derived conserved ortholog set (COS) markers enabled us to investigate the orthology of restorer genes originating from different genetic resources of rye as well as barley. The observed localization of Rfp3 and Rfm1 in a syntenic 4RL/6HS segment asks for further efforts towards cloning of both restorer genes as an option to study the mechanisms of male sterility and fertility restoration in cereals.
  相似文献   

9.
Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3′ terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion–deletion (InDel) sequence (AATTGTTTT) at the 59–67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and reliable genotyping tool to assist hybrid cotton breeding.  相似文献   

10.
Feng  Juanjuan  Zhu  Haiyong  Zhang  Meng  Zhang  Xuexian  Guo  Liping  Qi  Tingxiang  Tang  Huini  Wang  Hailin  Qiao  Xiuqin  Zhang  Bingbing  Shahzad  Kashif  Xing  Chaozhu  Wu  Jianyong 《Molecular biology reports》2020,47(2):1275-1282
Molecular Biology Reports - The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized...  相似文献   

11.

Background

Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear.

Results

Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA).

Conclusion

These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.  相似文献   

12.
Three-line japonica hybrids have been developed mainly on Chinsurah Boro II (BT)-type cytoplasmic male sterile (CMS) lines of Oryza sativa L., but the unstable sterility of some BT-type CMS lines, and the threat of genetic vulnerability when using a single cytoplasm source, have inhibited their use in rice cultivation. Previously, the sterility of Honglian (HL)-type japonica CMS lines derived from common red-awned wild rice (Oryza rufipogon) has been proven to be more stable than that of BT-type japonica CMS lines. Here, we genetically characterized HL-type japonica CMS lines and the restorer-of-fertility (Rf) gene for breeding HL-type japonica hybrids. HL-type japonica CMS lines displayed stained abortive pollen grains, unlike HL-type indica CMS lines. The BT-type japonica restorer lines, which contain Rf, had different capabilities to restore HL-LiuqianxinA (HL-LqxA), an HL-type japonica CMS line, and the restorers for the HL-type japonica CMS lines could be selected from the preexisting BT-type japonica restorers in rice production. A genetic analysis showed that the restoration of normal fertility to HL-LqxA was controlled by a major gene and was affected by minor effector genes and/or modifiers. The major Rf in SiR2982, a BT-type japonica restorer, was mapped to a ~100-kb physical region on chromosome 10, and was demonstrated to be Rf5 (Rf1a) by sequencing. Furthermore, Rf5 partially restored fertility and had a dosage effect on HL-type japonica CMS lines. These results will be helpful for the development of HL-type japonica hybrids.  相似文献   

13.

Key message

We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines.

Abstract

Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~?33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.
  相似文献   

14.

Key message

oxa CMS is a new cytoplasmic male sterility type in Brassica juncea.

Abstract

oxa CMS is a cytoplasmic male sterility (CMS) line that has been widely used in the production and cultivation of stem mustard in the southwestern China. In this study, different CMS-type specific mitochondrial markers were used to confirm that oxa CMS is distinct from the pol CMS, ogu CMS, nap CMS, hau CMS, tour CMS, Moricandia arvensis CMS, orf220-type CMS, etc., that have been previously reported in Brassica crops. Pollen grains of the oxa CMS line are sterile with a self-fertility rate of almost 0% and the sterility strain rate and sterility degree of oxa CMS is 100% due to a specific flower structure and flowering habit. Scanning electron microscopy revealed that most pollen grains in mature anthers of the oxa CMS line are empty, flat and deflated. Semi-thin section further showed that the abortive stage of anther development in oxa CMS is initiated at the late uninucleate stage. Abnormally vacuolated microspores caused male sterility in the oxa CMS line. This cytological study combined with marker-assisted selection showed that oxa CMS is a novel CMS type in stem mustard (Brassica juncea). Interestingly, the abortive stage of oxa CMS is later than those in other CMS types reported in Brassica crops, and there is no negative effect on the oxa CMS line growth period. This study demonstrated that this novel oxa CMS has a unique flower structure with sterile pollen grains at the late uninucleate stage. Our results may help to uncover the mechanism of oxa CMS in Brassica juncea.
  相似文献   

15.

Background and Aims

Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines.

Methods

In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR.

Key Results

Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited.

Conclusions

These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.Key words: Chalcone Synthase, flavonoids, Ogura cytoplasmic male sterility, CMS, pollen, Raphanus sativus  相似文献   

16.

Key message

Thirteen rice CMS lines derived from different cytoplasms were classified into eight groups by PCR amplification on mtDNA. The orf79 gene, which causes Boro II CMS, possibly results in Dian1-CMS.

Abstract

Thirteen rice cytoplasmic male sterile (CMS) lines derived from different cytoplasms are widely used for hybrid rice breeding. Based on 27 loci on mitochondrial DNA, including single nucleotide polymorphisms and segmental sequence variations between typical indica and japonica as well as high-polymorphism segmental sequence variations and single nucleotide polymorphisms among rice CMS lines, the 13 rice CMS lines were classified into eight groups: (I) wild-abortive CMS, Indonesian Shuitiangu CMS, K-CMS, Gang CMS, D-CMS and dwarf abortive CMS; (II) Maxie-CMS; (III) Honglian CMS; (IV) Boro II CMS; (V) Dian1-CMS; (VI) Liao-CMS; (VII) Lead CMS; and (VIII) Chinese wild rice CMS. According to their pollen abortion phenotypes, groups I and II (including 7 CMS lines) were classified as sporophytic CMS lines, the cytoplasmic genetic relationships among which were very close. They could have originated from similar, or even the same, cytoplasm donors. Groups III–VIII (including 6 CMS lines) were categorized as gametophytic CMS lines, the cytoplasms of which differed from one another, with some having relatively far genetic relationships. Dian1-CMS was found to harbor the orf79 gene, which causes Boro II CMS, whereas Liao-CMS had an orf79 structure that does not result in Lead CMS. Therefore, we speculated that orf79 is associated with Dian1-CMS but not with Liao-CMS. The atp6orf79 structure related to sterility was also found to experience multiple evolutionary turnovers. All sporophytic CMS lines were indica-like. Except the Honglian CMS line, which was indica-like, all gametophytic CMS lines were japonica-like.  相似文献   

17.
Summary In view of accumulating evidence that cytoplasmic male sterility (CMS) in some species results from an inability to generate the high ATP/ADP ratios required for specific stages of differentiation in the reproductive cycle, a number of aspects of ATP metabolism are being examined in CMS and male fertile plants.In experiments designed to test mitochondrial efficiency in ATP export, organelles from CMS plants performed very poorly when compared with normal lines. It is proposed that although most of the molecules involved in mitochondrial ATP production are nuclear encoded, the lesions in mitochondrial (mt)DNA known to accompany the CMS phenotype may be expressed as small modifications within the architecture of the mitochondrial membrane. To detect whether such changes could affect the ADP-ATP translocator in the membrane, two sets of experiments were carried out to determine a Km for the translocator. The two methods employed were based on different precepts, but nevertheless indicated a Km for the mitochondrial translocator in CMS lines which differed dramatically from that of male fertile plants. The view that CMS in Petunia hybrida thus might result from small differences in mtDNA encoded membrane proteins is considered in the light of the cytological changes seen to accompany CMS in these plants, as well as in the context of current theories advanced to explain CMS in other species.  相似文献   

18.
Summary X-irradiated protoplasts of Daucus carota L., 28A1, carrying cytoplasmic male sterile (CMS) cytoplasm and iodoacetamide-treated protoplasts of a fertile carrot cultivar, K5, were fused with polyethylene glycol (PEG), and 73 plants were regenerated. Twenty-six randomly chosen regenerated plants had non-parental mitochondrial DNA (mtDNA) as revealed by XbaI restriction fragment patterns, and all of the plants investigated had diploid chromosome numbers. Of the 11 cybrid plants that showed mtDNA fragment patterns clearly different from those of the parents, 10 plants showed male sterility with brown or red anthers, and one plant possessed partially sterile yellow anthers. The mtDNA fragment patterns of the ten cybrid plants with male sterile flowers resembled that of a CMS parent, 28A1; and four fragments were identified that were common between the sterile cybrid plants and 28A1, but absent from the partially sterile cybrid plants and a fertile cultivar, K5. The results indicated that the CMS trait of the donor was efficiently transferred into the cybrid plants by donor-recipient protoplast fusion.  相似文献   

19.
Anther and tapetum-specific genes are important for understanding male gametophyte development, as well as for their use in the development of barnase/barstar-gene based male sterility and restorer system for hybrid seed production. An essential component of the system is the availability of tapetum-specific promoters. In the present study, anther-specific genes were identified in cotton using microarray-based differential expression analysis, some of which show expression specific to the anthers at a stage where tapetum tissue was fully developed. Validation of the identified genes using RT-PCR and in situ hybridization identified one novel gene (AEG—Anther Expressing Gene) encoding a putative lipid binding protein as having a tapetum-specific expression. Further, three paralogs of the gene were identified in the cotton genome out of which the gene AEG1 (Anther Expressing Gene1) was found to express in the tapetum layer. Analysis of transgenic plants developed in cotton using 1.5 Kb promoter region of the of AEG1 gene fused upstream to the reporter gene β-glucuronidase revealed a broad window of expression of the AEG1 promoter in the tapetum tissue from the tetrad stage of anthers till the degeneration of the tapetum cells. Low levels of expression were also observed in the root tissues. Expression was not observed in the stem and leaves. The broad window of expression of AEG1 promoter in the tapetum tissue makes it a suitable candidate for the expression of the barstar gene for effective fertility restoration in the barnase/barstar system.  相似文献   

20.

Key message

A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops.

Abstract

Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号