首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5′ splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.  相似文献   

4.
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer-dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion-- reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H-U1 snRNP complex into a splicing enhancer.  相似文献   

5.
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic RNA is necessary to produce the complete viral protein complement, and aberrations in the splicing pattern impair HIV-1 replication. Genome splicing in HIV-1 is tightly regulated by the dynamic assembly/disassembly of trans host factors with cis RNA control elements. The host protein, heterogeneous nuclear ribonucleoprotein (hnRNP) A1, regulates splicing at several highly conserved HIV-1 3′ splice sites by binding 5′-UAG-3′ elements embedded within regions containing RNA structure. The physical determinants of hnRNP A1 splice site recognition remain poorly defined in HIV-1, thus precluding a detailed understanding of the molecular basis of the splicing pattern. Here, the three-dimensional structure of the exon splicing silencer 3 (ESS3) from HIV-1 has been determined using NMR spectroscopy. ESS3 adopts a 27-nucleotide hairpin with a 10-bp A-form stem that contains a pH-sensitive A+C wobble pair. The seven-nucleotide hairpin loop contains the high-affinity hnRNP-A1-responsive 5′-UAGU-3′ element and a proximal 5′-GAU-3′ motif. The NMR structure shows that the heptaloop adopts a well-organized conformation stabilized primarily by base stacking interactions reminiscent of a U-turn. The apex of the loop is quasi-symmetric with UA dinucleotide steps from the 5′-GAU-3′ and 5′-UAGU-3′ motifs stacking on opposite sides of the hairpin. As a step towards understanding the binding mechanism, we performed calorimetric and NMR titrations of several hnRNP A1 subdomains into ESS3. The data show that the UP1 domain forms a high-affinity (Kd = 37.8 ± 1.1 nM) complex with ESS3 via site-specific interactions with the loop.  相似文献   

6.
7.
Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5' GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3' end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5' splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression.  相似文献   

8.
9.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

10.
Heterogeneous nuclear ribonucleoprotein A1 and A2 (hnRNP A1/2) is a ubiquitously expressed RNA binding protein known to bind intronic or exonic splicing silencer. Binding of hnRNP A1/2 to survival of motor neuron gene (SMN1/2) exon 7 and flanking sequences strongly inhibits the inclusion of exon 7, which causes spinal muscular atrophy, a common genetic disorder. However, the role of hnRNP A1/2 on the side away from exon 7 is unclear. Here using antisense oligonucleotides, we fished an intronic splicing enhancer (ISE) near the 3′-splice site (SS) of intron 7 of SMN1/2. Mutagenesis identified the efficient motif of the ISE as “UAGUAGG”, coupled with RNA pull down and protein overexpression, we proved that hnRNP A1/2 binding to the ISE promotes the inclusion of SMN1/2 exon 7. Using MS2-tethering array and “UAGGGU” motif walking, we further uncovered that effects of hnRNP A1/2 on SMN1/2 exon 7 splicing are position-dependent: exon 7 inclusion is inhibited when hnRNP A1/2 binds proximal to the 5′SS of intron 7, promoted when its binds proximal to the 3′SS. These data provide new insights into the splicing regulatory mechanism of SMN1/2.  相似文献   

11.
12.
13.
Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.  相似文献   

14.
Yamashita T  Tomiyama T  Li Q  Numata H  Mori H 《FEBS letters》2005,579(1):241-244
Tau exon 10 (E10) splicing is a crucial event in its developmental change of tau isoform and tauopathy. To investigate the splicing mechanism, we isolated and compared mouse tau genomic sequence with human sequence. We identified a new element in mouse intron 10 (I10) to suppress E10 splicing, which was located just after the stem-loop region previously proposed in human sequence and found to potentially form another stem-loop. Human I10 with a mutation (+29G to A) causing a decreased E10 splicing was also predicted to form similar double stem-loop, suggesting that this element is universally involved in regulation of E10 splicing.  相似文献   

15.
16.
The neural cell-specific N1 exon of the c-src pre-mRNA is both negatively regulated in nonneural cells and positively regulated in neurons. We previously identified conserved intronic elements flanking N1 that direct the repression of N1 splicing in a nonneural HeLa cell extract. The upstream repressor elements are located within the polypyrimidine tract of the N1 exon 3' splice site. A short RNA containing this 3' splice site sequence can sequester trans-acting factors in the HeLa extract to allow splicing of N1. We now show that these upstream repressor elements specifically interact with the polypyrimidine tract binding protein (PTB). Mutations in the polypyrimidine tract reduce both PTB binding and the ability of the competitor RNA to derepress splicing. Moreover, purified PTB protein restores the repression of N1 splicing in an extract derepressed by a competitor RNA. In this system, the PTB protein is acting across the N1 exon to regulate the splicing of N1 to the downstream exon 4. This mechanism is in contrast to other cases of splicing regulation by PTB, in which the protein represses the splice site to which it binds.  相似文献   

17.
M Caputi  A Mayeda  A R Krainer    A M Zahler 《The EMBO journal》1999,18(14):4060-4067
Splicing of the human immunodeficiency virus type 1 (HIV-1) pre-mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis-regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV-1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans-acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre-mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high-affinity hnRNP A1-binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV-1 splicing.  相似文献   

18.
L A Fouser  J D Friesen 《Cell》1986,45(1):81-93
Mutations were introduced at all positions of the internal conserved sequence (ICS) and at three positions in the 5' junction sequence of a Saccharomyces cerevisiae actin intron contained within an actin-thymidine kinase fusion gene. Stage I of splicing is reduced by changes at all these positions. C or A replacement at the fifth nucleotide of the 5' sequence reduces the fidelity of RNA cleavage at the 5' exon-intron junction and results in an accumulation of aberrant lariat intermediate. Stage II of splicing is affected by changes in the first and second residues of the 5' sequence and in the penultimate position of the ICS. An A to G transition at the branch point of the ICS causes a major accumulation of lariat intermediate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号