首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In contrast to the few species of viviparous reptiles that developelaborate chorioallantoic placentae and ovulate eggs with relativelylow yolk content, most viviparous speciesovulate large yolkedeggs and have chorioallantoic placentae that are structurallyconservative. However, the placentae of the isolated yolk mass,the omphaloplacenta and omphalallantoic placenta, are sitesof structural elaboration in these species. Vitellogenesis providesthe primary source of nutrients for development, yet supplementalnourishment is contributed by the uterus. The embryo is dependenton the placentae for some materials, for example, gas and waterexchange, whereas other aspects of placental function are facultative,i.e., the provision of some inorganic and organic nutrients,and supplement yolk resources. Embryonic nutrition in thesepredominantly lecithotrophic species is characterized by featuresshared with oviparous ancestorscombined with supplemental advantagesto uterine gestation.  相似文献   

2.
The "plasma membrane transformation" describes a series of ultrastructural, biochemical, and morphological changes that occur in the uterus of many mammals at the time of blastocyst attachment. These changes, regardless of placental type or length of gestation, include alterations to microvillar length and density and the presence or absence of pinopods or uterodomes. Scanning electron microscopy (SEM) was used to 1) document the topographical ultrastructure of the uterus of Eulamprus tympanum, an eastern Australian viviparous skink with a simple chorioallantoic placenta, for the first time; and 2) determine whether changes identified as "plasma membrane transformation" in mammals occur in E. tympanum. Tissues collected over three seasons from nonreproductive subadult females, preovulatory, postovulatory, and early to mid-gestational females were examined. At low magnification the uterine epithelium of subadults displays a distinctive pattern of tissue folding that includes rectangular areas of tissue delineated by deep lateral and transverse folds. At higher magnification, the uterine epithelium surface is composed of two dominant cell types, i.e., those covered by microvilli and ciliated cells. The folding pattern observed in subadults is less evident in vitellogenic females and the cell surfaces appear highly secretory, with bulging cell apices. Tissue from postovulatory lizards has no distinctive folding pattern and cell surfaces are frequently smooth and lack microvilli. Uterine egg chambers lack ciliated cells at the embryonic pole, but display abundant secretory droplets. Thus, the uterus of E. tympanum undergoes a plasma membrane transformation. The scope of this transformation is not fully understood but may be related to the complexity of placental structure and the development of the embryo/fetus at parturition.  相似文献   

3.
Examination of late-stage placental material of the lizard Chalcides chalcides from the Hubrecht Laboratorium (Utrecht, The Netherlands) reveals several cytological and histological specializations that appear to have been superimposed over a morphological pattern that is typical for squamates. The chorioallantoic placenta is highly vascularized and consists of a single mesometrial placentome and a generalized paraplacentomal region, both of which are epitheliochorial. The placentome is deciduate, and contains deeply interdigitating folds of hypertrophied uterine and chorioallantoic tissue. Chorionic epithelium lining the placentome comprises enlarged, microvilliated cells, a small proportion of which are diplokaryocytes. The placentomal uterine epithelium is not syncytial and consists of enlarged cells bearing microvilli. The yolk sac placenta is a true omphaloplacenta (sensu stricto), being formed by juxtaposition of uterine tissues to an avascular, bilaminar omphalopleure. Epithelium of the omphalopleure is stratified and is hypertrophied into papillae that project into detritus of the uterine lumen. The omphalopleure is separated from the yolk sac proper by a yolk cleft that is not confluent with the exocoelom and is not invaded by the allantois. Neither an omphalallantoic placenta nor a true choriovitelline placenta is present in late gestation. Morphologically, the mature placentae of C. chalcides are among the most specialized to have been described in reptiles, reflecting the substantial maternal-fetal nutrient transfer that occurs in this species. © 1993 Wiley-Liss, Inc.  相似文献   

4.
We used immunofluorescent confocal microscopy and scanning electron microscopy to quantify uterine vascularity and to describe uterine surface morphology during gestation in pregnant females of the lecithotrophic lizard Niveoscincus coventryi. As uterine angiogenesis and epithelial cell morphology are thought to be under progesterone control, we studied the effect of a progesterone receptor antagonist (mifepristone) on uterine and chorioallantoic microvasculature and features of the uterine epithelial surfaces. Although intussuceptive angiogenesis was observed in both, uterine and chorioallantoic, vascular beds during gestation, the only significant increases were in the diameters of the uterine vessels. An ellipsoid vessel‐dense area grows in the mesometrial hemisphere of the developing conceptus, which parallels the expansion of the allantois to form the chorioallantoic placenta. Uterine surface topography changed during gestation. In particular, uterine blood vessels bulge over the luminal surface to form marked ridges on the uterine embryonic hemisphere, especially during the last stage of pregnancy, and ciliated cells are maintained in the embryonic and abembryonic hemispheres but disappear in both the mesometrial and antimesometrial poles. This distinct regionalization of uterine ridges and ciliated cells in the uterine surface and in the shape of the epithelial component of the chorion might be related to the function of both chorioallantoic and yolk sac placentae during gestation. There was no significant difference between females treated with or without mifepristone, which may be related to the partial function of mifepristone as a progestin antagonist and/or with the function and time of action of progesterone in the uterus during gestation in N. coventryi. Differences in the pattern of angiogenesis and uterine surface morphology during gestation among squamates may be related to the functional diversity of the uterine component of the different placentae and probably reflect its diverse evolutionary history. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
We have reviewed published and new quantitative data on the net uptake of nutrients by embryos of oviparous and viviparous lizards that vary in chorioallantoic placental complexity to better understand the evolution of complex placentae. We assessed net nutrient uptake during embryonic development by measuring the total dry mass, or the mass of separate nutrients, in the egg at about the time of ovulation and in the neonate. There is no significant difference in the fresh egg to neonate dry mass ratio of oviparous and viviparous species that have simple placentae, indicating that there is little, if any, net uptake of nutrients by viviparous species with simple chorioallantoic placentae. In contrast, there is significant uptake of dry matter and individual nutrients across the placenta of species with complex chorioallantoic placentae. Species of the genus Niveoscincus have a range of placentae and nutrient uptakes, even among populations of one species, suggesting that further studies among populations of single species are required. Data are available for relatively few clades, and all the data for the three most complex chorioallantoic placental types are derived from a single genus. Thus, further research on new genera of lizards is required to overcome the potentially confounding effects of phylogeny in our analyses.  相似文献   

6.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

7.
Development of the yolk sac of squamate reptiles (lizards and snakes) differs from other amniote lineages in the pattern of growth of extraembryonic mesoderm, which produces a cavity, the yolk cleft, within the yolk. The structure of the yolk cleft and the accompanying isolated yolk mass influence development of the allantois and chorioallantoic membrane. The yolk cleft of viviparous species of the Eugongylus group of scincid lizards is the foundation for an elaborate yolk sac placenta; development of the yolk cleft of oviparous species has not been studied. We used light microscopy to describe the yolk sac and chorioallantoic membrane in a developmental series of an oviparous member of this species group, Oligosoma lichenigerum. Topology of the extraembryonic membranes of late stage embryos differs from viviparous species as a result of differences in development of the yolk sac. The chorioallantoic membrane encircles the egg of O. lichenigerum but is confined to the embryonic hemisphere of the egg in viviparous species. Early development of the yolk cleft is similar for both modes of parity, but in contrast to viviparous species, the yolk cleft of O. lichenigerum is transformed into a tube‐like structure, which fills with cells. The yolk cleft originates as extraembryonic mesoderm is diverted from the periphery of the egg into the yolk sac cavity. As a result, a bilaminar omphalopleure persists over the abembryonic surface of the yolk. The bilaminar omphalopleure is ultimately displaced by intrusion of allantoic mesoderm between ectodermal and endodermal layers. The resulting chorioallantoic membrane has a similar structure but different developmental history to the chorioallantoic membrane of the embryonic hemisphere of the egg. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The viviparous African skink, Eumecia anchietae, exhibits a matrotrophic fetal nutritional pattern. Until well after the limb bud stage, extravitelline nutritional provision is in the form of holocrine secretion originating from the stratified uterine epithelium of the uterine incubation chambers. Uterine secretions are absorbed by a specialized yolk sac ectoderm and chorioallantois through histotrophy. The yolk sac is not in close contact with the uterine lining from the limb bud stage onwards. The yolk sac ectoderm forms invaginations filled with uterine secretion and consists of a single layer of vacuolated hypertrophied cells bearing microvilli. The chorioallantois at the limb bud stage is extensive, well-vascularized, and not intimately associated with the uterine epithelium. Where the uterus is folded, the chorioallantois may interdigitate loosely. Chorionic cells are low to high columnar, clearly vacuolated, and bear microvilli. The allantoic layer consists primarily of squamous cells exhibiting villous projections. By the time embryos have well-defined digits, the specialized yolk sac ectoderm has regressed and the yolk sac lumen has been invaded by vitelline cells. The chorioallantois is very extensive and in areas greatly folded. Where it contacts the uterine epithelium, a proper chorioallantoic placenta is formed. Cell layers of the chorioallantois and uterine epithelium are thin and cuboidal to squamous in appearance. The chorioallantoic placenta is simple in structure, occurs throughout the incubation chamber, and is epitheliochorial in arrangement. It is unknown whether the placentome observed in other highly matrotrophic scincids is formed in late stage embryos of this species.  相似文献   

9.
The reptilian placenta is a composite structure formed by a functional interaction between extraembryonic membranes and the maternal uterus. Study of placental structure of squamate reptiles over the past century has established that each of the multiple independent origins of placentation, which characterize the reproductive diversity of squamates, has resulted from the evolutionary transformation of these homologous structures. Because each evolutionary transformation is an independent novel relationship between maternal and embryonic tissues, the resulting placentae are not homologous, even though the individual components may be. The evolution of reptilian placentation should reveal much about evolutionary patterns and mechanisms because similar structural-functional systems have been transformed along parallel trajectories on multiple occasions. We compared extraembryonic membrane and placental development and pattern of embryonic nutrition in thamnophiine snakes and Pseudemoia lizards in the context of recent hypotheses of phylogenetic relationships. Two primary types of placentation, chorioallantoic and yolk sac, evolved in each lineage. Smooth, highly vascular regions of chorioallantoic placentation are indistinguishable homoplasies that evolved in parallel, likely to facilitate respiratory exchange. The yolk sac placenta of each lineage is specialized for histotrophic nutrient transfer, yet composition of these structures differs because of variation in the ancestral snakes and lizards. In addition, the omphalopleure that contributes to yolk sac placentation persists to later embryonic stages compared to oviparous outgroups, but the two lineages have evolved different structures that prevent replacement of the omphalopleure by the allantois. Each lineage has also evolved unique structural specializations of the chorioallantoic placenta.  相似文献   

10.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

11.
The uterine epithelium provides the interface between an embryo and its mother during pregnancy. Calcium-dependent cadherins are adherens junction proteins that undergo major shifts in the uterine epithelium to facilitate the communication between maternal cells and the embryonic milieu during implantation in mammals. They are, therefore, important in trophoblast invasion and the maintenance of pregnancy. We investigated spatiotemporal changes of cadherins throughout pregnancy in the uterine epithelium of two viviparous skinks and one oviparous population, which all exhibit a noninvasive (epitheliochorial) placenta. Cadherins were identified for the first time in squamate reptiles. In all species, cadherins are reduced in the uterine epithelium as gestation progresses, which would lessen the attachment between uterine epithelial cells and allow them to stretch to accommodate embryonic growth. Interestingly, cadherins were reduced sooner after ovulation in the oviparous species than in the viviparous species. In viviparous species, the different expression of cadherins between barren and pregnant uteri from the same mother indicates that expression of cadherins may not be driven solely by maternal hormones, but also by the presence of an embryo. The redistribution of cadherins in squamates is comparable to that of mammals, reflecting establishment of feto-maternal communication during the peri-implantation period. As there is no breaching of maternal tissue in lizards, the change in adherens junctional properties are thus not exclusive to mammals with invasive placentae, which suggests that similar molecular mechanisms regulate changes to uterine epithelia during pregnancy across placental types.  相似文献   

12.
Virginia striatula is a viviparous snake with a complex pattern of embryonic nutrition. Nutrients for embryonic development are provided by large, yolked eggs, supplemented by placental transfer. Placentation in this species is surprisingly elaborate for a predominantly lecithotrophic squamate reptile. The embryonic-maternal interface consists of three structurally distinct areas, an omphalallantoic placenta and a regionally diversified chorioallantoic placenta. The chorioallantoic placenta over the embryonic hemisphere (paramesometrial region) of the egg, features close apposition of embryonic and uterine blood vessels because of the attenuate form of the interceding epithelial cells. The periphery of the chorioallantoic placenta, which is adjacent to the omphalallantoic placenta, is characterized by a simple cuboidal uterine epithelium apposed to a stratified cuboidal chorionic epithelium. There are no sites with attenuate epithelial cells and close vascular apposition. The morphology of the omphalallantoic placenta is similar to that of the peripheral chorioallantoic placenta, except that the height of uterine epithelial cells is greater and allantoic blood vessels are not associated with the embryonic epithelium. The functional capabilities of the three placental regions are not known, but structural characteristics suggest that the omphalallantoic placenta and peripheral zone of the chorioallantoic placenta are sites of nutritional provision via histotrophy. The paramesometrial region of the chorioallantoic placenta is also nutritive, in addition to functioning as the primary embryonic respiratory system. The structure of the chorioallantoic placenta of V. striatula is a new placental morphotype for squamate reptiles that is not represented by a classic model for the evolution of reptilian placentation.  相似文献   

13.
The aim of this review is to collate data relevant to understanding the evolution of viviparity in general, and complex placentae in particular. The wide range of reproductive modes exhibited by lizards provides a solid model system for investigating the evolution of viviparity. Within the lizards are oviparous species, viviparous species that have a very simple placenta and little nutrient uptake from the mother during pregnancy (lecithotrophic viviparity), through a range of species that have intermediate placental complexities and placental nutrient provision, to species that lay microlecithal eggs and most nutrients are provided across the placenta during development (obligate placentotrophy). In its commonest form, lecithotrophic viviparity, some uptake of water, inorganic ions and oxygen occurs from the mother to the embryo during pregnancy. In contrast, the evolution of complex placentae is rare, but has evolved at least five times. Where there is still predominantly a reliance on egg yolk, the omphaloplacenta seems to be paramount in the provision of nutrition to the embryo via histotrophy, whereas the chorioallantoic placenta is more likely involved in gas exchange. Reliance on provision of substantial organic nutrient is correlated with the regional specialisation of the chorioallantoic placenta to form a placentome for nutrient uptake, particularly lipids, and the further development of the gas exchange capabilities of the other parts of the chorioallantois.  相似文献   

14.
Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal–embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical‐shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85–90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin‐D28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin‐D28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin‐D28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin‐D28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin‐D28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Placental membranes mediate maternal‐fetal exchange in all viviparous reptilian sauropsids. We used scanning electron microscopy to examine the placental interface in the mountain spiny lizard, Sceloporus jarrovi (Phrynosomatidae). From the late limb bud stage until birth, the conceptus is surrounded by placental membranes formed from the chorioallantois and yolk sac omphalopleure. The chorioallantois lies directly apposed to the uterine lining with no intervening shell membrane. Both fetal and maternal sides of the chorioallantoic placenta are lined by continuous layers of flattened epithelial cells that overlie dense capillary networks. The chorioallantoic placenta shows specializations that enhance respiratory exchange, as well as ultrastructural evidence of maternal secretion and fetal absorption. The yolk sac placenta contains enlarged fetal and maternal epithelia with specializations for histotrophic nutrient transfer. This placenta lacks intrinsic vascularity, although the vascular allantois lies against its inner face, contributing to an omphallantoic placenta. In a specialized region at the abembryonic pole, uterine and fetal tissues are separated by a compact mass of shed shell membrane, yolk droplets, and cellular debris. The omphalopleure in this region develops elongate folds that may contribute to sequestration and absorption of this material. Fetal membrane morphogenesis and composition in S. jarrovi are consistent with those of typical squamates. However, this species exhibits unusual placental specializations characteristic of highly placentotrophic lizards. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Energy consumption during development has been measured in many oviparous lizards, but not in viviparous lizards in utero. It has always been assumed that energy consumption by embryos of viviparous lizards during development is similar to that of oviparous species. Estimation of energy consumption of viviparous lizards in vivo are confounded by the possible influence of pregnancy on maternal metabolism. Here we separated maternal and embryonic metabolism in measurements of pregnant Eulamprus tympanum throughout pregnancy. Our data support the hypothesis that the energetic cost of development in viviparous lizards (19.8 kJ g(-1)) is similar to that in oviparous lizards (mean 16.2 kJ g(-1)), at least for a species with a simple placenta. An increase in maternal metabolism of 29% above that for non-pregnant E. tympanum goes to maintain pregnancy, and represents an important component of the reproductive effort in E. tympanum.  相似文献   

17.
We used light microscopy to study placental structure of the lizard Sceloporus mucronatus throughout 6 months of embryonic development. Three stages of placental development could be assigned to embryos based on the arrangement of the extraembryonic membranes. A highly vascular choriovitelline placenta was present in the embryonic hemisphere and a nonvascular bilaminar omphalopleure covered most of the abembryonic hemisphere of the egg during embryonic Stages 10-28. A chorioallantoic placenta replaced the choriovitelline placenta by embryonic Stage 29 and an omphaloplacenta covered the abembryonic hemisphere at this stage. The combination of these two placental types occurred in Stage 29-36 embryos. The final stage of placentation, embryonic Stages 37-40, was characterized by an omphalallantoic placenta in the abembryonic hemisphere and a chorioallantoic placenta in the embryonic hemisphere of the egg. The choriovitelline and chorioallantoic placentae are well vascularized, with closely apposed maternal and embryonic blood vessels. These structures are the most likely sites of respiratory exchange. In contrast, the omphaloplacenta and omphalallantoic placentae contain cuboidal or columnar epithelia and these structures may function in histotrophic exchange. Placentation of S. mucronatus is similar to that of predominantly lecithotrophic species in other squamate lineages suggesting that the evolution of this placental morphology is a response to similar factors and is independent of phylogeny.  相似文献   

18.
Yolk is the primary source of calcium for embryonic growth and development for most squamates, irrespective of mode of parity. The calcified eggshell is a secondary source for embryonic calcium in all oviparous eggs, but this structure is lost in viviparous lineages. Virginia striatula is a viviparous snake in which embryos obtain calcium from both yolk and placental transport of uterine calcium secretions. The developmental pattern of embryonic calcium acquisition in V. striatula is similar to that for oviparous snakes. Calbindin-D(28K) is a marker for epithelial calcium transport activity and plasma membrane Ca(2+)-ATPase (PMCA) provides the energy to catalyze the final step in calcium transport. Expression of calbindin-D(28K) and PMCA was measured by immunoblotting in yolk sac splanchnopleure and chorioallantois of a developmental series of V. striatula to test the hypothesis that these proteins mediate calcium transport to embryos. In addition, we compared the expression of calbindin-D(28K) in extraembryonic membranes of V. striatula throughout development to a previously published expression pattern in an oviparous snake to test the hypothesis that the ontogeny of calcium transport function is independent of reproductive mode. Expression of calbindin-D(28K) increased in yolk sac splanchnopleure and chorioallantois coincident with calcium mobilization from yolk and uterine sources and with embryonic growth. The amount of PMCA in the chorioallantois did not change through development suggesting its expression is not rate limiting for calcium transport. The pattern of expression of calbindin-D(28K) and PMCA confirms our initial hypothesis that these proteins mediate embryonic calcium uptake. In addition, the developmental pattern of calbindin-D(28K) expression in V. striatula is similar to that of an oviparous snake, which suggests that calcium transport mechanisms and their regulation are independent of reproductive mode.  相似文献   

19.
Reproductive mode has been remarkably labile among squamate reptiles and the evolutionary transition from oviparity to viviparity commonly has been accompanied by a shift in the pattern of embryonic nutrition. Structural specializations for placental transfer of nutrients during intrauterine gestation are highly diverse and many features of the extraembryonic membranes of viviparous species differ markedly from those of oviparous species. However, because of a high degree of evolutionary divergence between the species used for comparisons it is likely that the observed differences arose secondarily to the evolution of viviparity. We studied development of the extraembryonic membranes and placentation in the reproductively bimodal lizard Lacerta vivipara because the influence of reproductive mode on the structural/functional relationship between mothers and embryos can best be understood by studying the most recent evolutionary events. Lecithotrophic viviparity has evolved recently within this species and, although populations with different reproductive modes are allopatric, oviparous and viviparous forms interbreed in the laboratory and share many life history characteristics. In contrast to prior comparisons between oviparous and viviparous species, we found no differences in ontogeny or structure of the extraembryonic membranes between populations with different reproductive modes within L. vivipara. However, we did confirm conclusions from previous studies that the tertiary envelope of the egg, the eggshell, is much reduced in the viviparous population. These conclusions support a widely accepted model for the evolution of squamate placentation. We also found support for work published nearly 80 years ago that the pattern of development of the yolk sac of L. vivipara is unusual and that a function of a unique structure of squamate development, the yolk cleft, is hematopoiesis. The structure of the yolk sac splanchnopleure of L. vivipara is inconsistent with a commonly accepted model for amniote yolk sac function and we suggest that a long standing hypothesis that cells from the yolk cleft participate in yolk digestion requires further study.  相似文献   

20.
Historically, Australia has been important in the study of, and the development of hypotheses aimed at understanding, the evolution of viviparity in amniote vertebrates. Part of the importance of Australia in the field results from a rich fauna of skinks, including one of the broadest ranges of diversity of placental structures within one geographic region. During the last decade, we have focussed our studies on one lineage, the Eugongylus group of skinks of the subfamily Lygosominae because it contains oviparous species and some that exhibit complex placentae. Our specific objective has been to attempt to understand the fundamental steps required when viviparity, and ultimately complex placentae, evolve from oviparous ancestors. We have taken a three-prong approach: (1) detailed study of the morphology and ontogeny of the placentae of key species at the light microscope level; (2) study of changes in the uterus associated with pregnancy, or the plasma membrane transformation; and (3) measures of the net exchange of nutrients across the placenta or eggshell of key species. In turn, we have found that: (1) details of the morphology and ontogeny of placentae are more complex that originally envisaged, and that the early conclusions about a sequence in the evolution of complex placentae was naïve; (2) a plasma membrane transformation occurs in viviparous, but not oviparous lizards, and thus may be a fundamental feature of the evolution of viviparity in amniotes; and (3) species with more complex chorioallantoic placentae tend to transport more nutrients across the placenta during pregnancy than those with simpler chorioallantoic placentae but, because the correlation is not tight, the importance of the omphaloplacenta in transporting nutrients may have been overlooked. Also, the composition of yolk of highly matrotrophic species is broadly similar, but not identical, to the yolk of oviparous species. Some of the interpretation of our data within the context of our specific objective is not yet possible, pending the publication of a robust phylogeny of Eugongylus group skinks. Once such a phylogeny is available, we are in a position to propose specific hypotheses about the evolution of viviparity that can be tested using another lineage of amniotes, possibly Mabuya group skinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号