首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have observed the rhythmic pattern of echinostome cercariae, infecting Lymnea stagnalis Linnaeus, 1758 in a freshwater body located near Barabanki. There is high cercarial shedding (74%) during dark phase (18.30–06.30 h), which is statistically significant (F = 861.04, p < 0.001). Sesonal pattern of rhythmicity shows maximum yield in summer months (April, May and June) and low yeild in February and July. Periodicity of 2 h shows their high shedding in dark phase (12.30–14.30 h). We also observed the effect of temperature at four different temperatures (10°, 15°, 20° and 25°) and their shedding was found to be high at 20 °C and low at 10 °C. Probably, in an effort to approach their intermediate hosts, they acquire this pattern of rhythmicity.  相似文献   

2.
Photic phase response curves (PRCs) have been extensively studied in many laboratory-bred diurnal and nocturnal rodents. However, comparatively fewer studies have addressed the effects of photic cues on wild diurnal mammals. Hence, we studied the effects of short durations of light pulses on the circadian systems of the diurnal Indian Palm squirrel, Funambulus pennanti. Adult males entrained to a light–dark cycle (12?h–12?h) were transferred to constant darkness (DD). Free-running animals were exposed to brief light pulses (250 lux) of 15?min, 3 circadian hours (CT) apart (CT 0, 3, 6, 9, 12, 15, 18 and 21). Phase shifts evoked at different phases were plotted against CT and a PRC was constructed. F. pennanti exhibited phase-dependent phase shifts at all the CTs studied, and the PRC obtained was of type 1 at the intensity of light used. Phase advances were evoked during the early subjective day and late subjective night, while phase delays occurred during the late subjective day and early subjective night, with maximum phase delay at CT 15 (?2.04?±?0.23?h), and maximum phase advance at CT 21 (1.88?±?0.31?h). No dead zone was seen at this resolution. The free-running period of the rhythm was concurrently lengthened (deceleration) during the late subjective day and early subjective night, while period shortening (acceleration) occurred during the late subjective night. The maximum deceleration was noticed at CT 15 (?0.40?±?0.09?h) and the maximum acceleration at CT 21 (0.39?±?0.07?h). A significant positive correlation exists between the phase shifts and the period changes (r?=?0.684, p?=?0.001). The shapes of both the PRC and period response curve (τRC) qualitatively resemble each other. This suggests that the palm squirrel’s circadian system is entrained both by phase and period responses to light. Thus, F. pennanti exhibits robust clock-resetting in response to light pulses.  相似文献   

3.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0–ZT12 or ZT12–ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish. (Author correspondence: )  相似文献   

4.
《Chronobiology international》2013,30(7):1348-1364
The phase and period responses to short light pulses were studied in the jerboa, a seasonal, hibernating, nocturnal rodent from the Atlas region in Morocco. The jerboa, which is a saltatory species, showed precise activity onsets and offsets under a light-dark (LD) cycle using infrared captors to record locomotor activity. When released into constant darkness (DD), the majority of animals showed a circadian period (τ) <24?h (mean τ?=?23.89?±?0.13?h) and a lengthening of the activity span, α. Animals were subsequently exposed to up to eight 15-min light pulses, each separated by at least 2 wks, for up to 160 days in DD. During this span, most individuals maintained robust circadian rhythmicity, with clearly defined activity onsets and offsets, similar levels of total activity, duration of α, and percent activity occurring during the subjective night. The phase response curve (PRC) is typical of other nocturnal rodents, with light eliciting delays during late subjective day and early subjective night (CT8–CT19) and advances during late subjective night to early subjective day (CT19–CT2). A dead zone, when light had no effect on phase, is observed during mid-subjective day (CT3–CT8). A few individuals showed large (>9?h) Type 0 phase resetting near the singularity region (CT19) that resulted in a complete phase reversal, but otherwise displayed normal phase-shifting responses at other CT times. The τ response curve showed a decrease in period from early to late subjective night with increases at other times, but these changes were small (maximum <9?min) and highly variable. There was a distinct tendency for animals that had an initial short τ in DD to conserve a short τ during the series of light pulses and, inversely, for animals with long τ to conserve a long τ. This suggests possible constraints on the plasticity of variation of τ in relation to the endogenous period of the animal. (Author correspondence: )  相似文献   

5.
ABSTRACT. Domestic turkeys naturally infected with Leucocytozoon smithi were blinded by bilateral ocular enucleation, pinealectomized, sham-pinealectomized, pinealectomized plus enucleated, or maintained as controls. Groups of turkeys were acclimated to either light-dark periods of 14L:10D or “darkness” with intermittent periods (10–20 min) of red light at irregular hours approximately every three days as required for maintenance of turkeys. Peripheral gametocyte numbers of L. smithi in all groups were determined every 2 h over a 36 h period. Under 14L: 10D photoperiod, no observable difference in the pattern of gametocyte circadian rhythmicity between pinealectomized, enucleated, pinealectomized plus enucleated, and control turkeys was noted. Although mean parasitemias differed among groups, peak gametocyte numbers occurred between 1000 and 1800 h; how parasitemias occurred between 2000 and 0400 h. However, the phase of gametocyte rhythmicity in pinealectomized plus enucleated turkey hosts did exhibit a lag with reference to other hosts when examined by least squares fits of simple harmonics. Under conditions of “darkness” with intermittent, irregular periods of red light, L. smithi gametocyte numbers of individual turkeys, pinealectomized, sham-pinealectomized, or maintained as controls, exhibited a circadian periodicity though parasite cycles were out of phase with the natural photoperiod to which the turkeys previously had been exposed. A slight drift out of phase of L. smithi gametocyte periodicity occurred among turkeys in the sham-pinealectomized and the control groups while a considerably more prominent drift out of phase was seen among the parasite rhythmicity patterns of the pinealectomized birds. Data indicate that the pineal gland of the turkey did not directly mediate L. smithi gametocyte circadian periodicity, although an indirect involvement in regulating the timing of parasite rhythmicity is suggested.  相似文献   

6.
Summary Acetylcholinesterase (AChE) activity in the central nervous system and foot muscle in the garden snail,Cryptozona ligulata, was maximum at 20.00 h and minimum at 08.00 h during the 24 h period of the day. The cyclic variation in acetylcholine (ACh) was out of phase with that of AChE. In the body fluid, ACh content showed a rhythm with maximum at 00.00 h and minimum at 12.00 h, with AChE activity being in phase with it.The rhythm of spontaneous electrical activity of the nervous system was in phase with that of AChE activity in tissues. Perfusion with body fluid collected from snails at 20.00 h elevated the spontaneous electrical activity, while body fluid collected at 08.00 h inhibited the activity. Perfusion with extract prepared from the central nervous tissue isolated at 08.00 h elevated the electrical activity, while the extract prepared from nervous tissue isolated at 20.00 h inhibited the activity. Perfusion with 10–4 M acetylcholine chloride solution elevated the electrical activity.It is suggested that the synthesis and release of ACh occur in a regular diel cycle in tissues. These changes, among others, may be responsible for the observed diurnal rhythmicity in electrical activity in the snail.  相似文献   

7.
Fabry disease is a progressive disease characterized by an enzymatic deficiency of acid alpha-galactosidase and glycosphingolipids storage within the lysosomes. The disease has two phenotypes: classic and nonclassic. Excessive daytime sleepiness is a common sign reported by patients and can be caused by a circadian rhythm sleep disorder. Activity and rest cycle, variation of body temperature and melatonin biosynthesis are known rhythmicity markers. In the face of these evidences, our goal was to evaluate the rhythmic profile in Fabry’s disease patients using rhythmicity markers. For this purpose, we recruited 17 patients diagnosed with Fabry disease (11 classic and 6 nonclassic variant) that answered the Epworth Sleepiness Scale and the Morningness–Eveningness questionnaire adapted from Horne and Ostberg; recorded activity and body temperature rhythms by an actigraphy during at least 10 days and collected urine to assess 6-sulfatoxymelatonin excretion load during the day (from the second urine in the morning until 7 p.m.) and night (starting from 7 p.m. until the first urine in the morning of the following day). We observed that control subjects presented higher excretion load of 6-sulfatoxymelatonin during the night (p < 0.05, d = 7.8), as expected. Patients with the nonclassic variant presented an inversion on 6-sulfatoxymelatonin daily profile (p < 0.05, d = 3.8) and there was no difference between the day and night profile of classic variant patients when compared to the other two groups. Patients with the classic variant also presented temperature period greater than 24 hours (p < 0.05, d = 2.0). Therefore, we came to the conclusion that there is an alteration in the circadian rhythms in Fabry disease patients, evidenced by modifications in the 6-sulfatoxymelatonin daily profile and in the body temperature rhythm period.  相似文献   

8.
Evaluation of protectant ability of Newbouldia laevis (Seem.) extracts against infestation by Callosobruchus maculatus in cowpea, Vigna unguiculata L. (Walp.) was carried out in the laboratory at ambient temperature of 28?±?2?°C and 70?±?5% relative humidity. Extracts from wood ash, leaf, stem and root bark were tested at different concentrations of 0, 1, 2, 3, 4 and 5%. One hundred per cent mortality of adult beetles was achieved at all concentrations within 72?h of treatment with extracts except in wood ash at 1% concentration, but they were significantly different (p?<?0.05) from the controls. All the extracts were still able to cause high beetle mortality after one, two and three months of cowpea storage at high concentrations (4 and 5%) except wood ash, although there was a slight decrease in mortality during the period of storage. All the extracts significantly (p?<?0.05) reduced oviposition and adult emergence of C. maculatus when compared with the controls although the reduction was higher at 5% concentration than others. Adult beetle emergence was completely prevented at higher concentrations (4 and 5%) except in wood ash. Both oviposition and adult emergence increased during the months of storage probably because of the slight reduction in the effectiveness of the extracts. The root bark extract was much more effective in reducing oviposition and adult emergence than others throughout the period of storage. The plant extracts of N. laevis was able to protect the cowpea seeds from damage and prevent weight loss. Cowpea seed damage and weight loss was significantly more (p?<?0.05) in the controls than other for the three-month duration probably because of the more adult emergence. The extracts from N. laevis did not adversely affect the germination of the protected seeds and seed germination ranged from 86.7 to 100%. It has been shown in this study that the extracts of N. laevis were effective against C. maculatus in cowpea although the root bark extract seemed to be the most effective while the wood ash extract was least effective. Their effectiveness, however, slightly decreased during the period of storage. N. laevis could be incorporated into pest management of stored cowpeas since the products are ecologically safe.  相似文献   

9.
《Chronobiology international》2013,30(9):1062-1074
The aim of the present study was to evaluate the development of the circadian rhythm of the salivary cortisol in premature infants and its correlation with the onset of the sleep–activity behavior pattern during the first 3 weeks of life under controlled light:dark conditions. Furthermore, we investigated the influence of acoustic stimulation by audiotaped lullabies or the maternal voice on the cortisol values and long-term sleep–activity patterns. The study was a block-randomized, prospective clinical trial with a study population of 62 preterm neonates (30?<?37 gestational age). We compared two study groups who listened either to music or to the maternal voice (music: N?=?20; maternal voice: N?=?20) with a matched control group (N?=?22). The acoustic stimulation took place every evening between 20:00 and 21:00?h for 30?min over a period of 2 weeks. The cortisol values and activity–rest behavior of the neonates were determined during the first 3 weeks of life on the 1st, 7th and 14th day. Actigraphic monitoring was used to record the activity pattern continuously over 24?h and a validated algorithm for neonates was used to estimate sleep and wakefulness. The saliva samples were obtained 10?min before and 10?min after the acoustic interventions for the study groups. Additionally, saliva samples were obtained from the control group seven times over a 24-h period (20:00, 21:00, 01:00, 05:00, 08:00, 13:00 and 17:00?h). The cortisol data were analyzed by fast Fourier transformation to assess periodic characteristics and frequencies. Hierarchical linear modeling was further performed for the statistical analysis. Results: The cortisol rhythm analysis indicated a circadian rhythm pattern for only one premature infant, all others of the neonates showed no circadian or ultradian rhythm in cortisol. Cortisol level of the premature neonates was significantly higher during the first day of the study period at night-time (median: 17.1?nmol/L, IQR?=?9.7–24.4?nmol/L) than on days 7 (median: 9.6?nmol/L, IQR?=?4.7–14.6?nmol/L; Tukey-HSD, z?=?4.12, p?<?0.001) and 14 (IQR?=?5.8–13.7?nmol/L; Tukey-HSD, z?=?2.89, p?<?0.05). No significant effect of acoustic stimulation was observed on the cortisol concentration and sleep–wake behavior. The activity–sleep rhythm of preterm neonates was dominated by ultradian rhythm patterns with a prominent period length of 4?h (30.5%). Activity frequencies of neonates were also significantly higher overnight on the first study day (mean: 329?±?185.1?U) than of night seven (mean: 260.2?±?132.4?U; Tukey-HSD, z?=?2.50, p?<?0.05). Quiet-activity patterns increased, whereas high-activity patterns decreased during the observation period. Average sleep time increased significantly during the study time from day 1 to day 7 (Tukey-HSD, z?=?2.51, p?<?0.05). In conclusion, premature infants showed higher cortisol levels – without a circadian rhythmicity – and higher activity frequencies in the first days after birth which may reflect an adaptation process of neonates after birth. Cortisol concentrations and the activity patterns were not influenced by music interventions.  相似文献   

10.
Most wrasse species swim during the day and bury themselves in the sandy bottoms of shallow reefs at night. This study aimed to evaluate the importance of sandy bottoms to the day-active/night-inactive rhythmicity of the tropical wrasse Halichoeres trimaculatus. Actogram analysis revealed that fish were active during the photophase and inactive during the scotophase in aquariums with both sandy and bare bottoms. When fish were kept in aquariums with bare bottoms, rhythmicity was maintained under constant dark conditions (DD) but became obscured under constant light conditions (LL), suggesting that a day-active/night-inactive rhythmicity is regulated by the circadian system. Robust fluctuations in Period1 (wPer1) and Period2 (wPer2) expression were observed in the pectoral fin tissue under light–dark conditions (LD). Similar fluctuations in wPer1 expression persisted under DD. When fish were kept under LD conditions for 7 days and then DD for 20 days, the emergence of fish from the sandy bottom was delayed gradually. At the same time, the peak time of wPer1 expression under DD was retarded from 06:00 to 10:00. Although wPer2 expression was dampened under DD, it increased after exposing fish to light. These results suggest that wPer1 and wPer2 are differentially involved in the day-active/night-inactive rhythmicity, and that blocking light with a sandy bed at night and exposing fish to light during emergence in the morning play important roles in maintaining consistent activities in wrasse species.  相似文献   

11.
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non‐SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five‐day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake‐time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi‐hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions.  相似文献   

12.
The raccoon dog (Nyctereutes procyonoides) is the only canid with passive overwintering in areas with cold winters, but the depth and rhythmicity of wintertime hypothermia in the wild raccoon dog are unknown. To study the seasonal rhythms of body temperature (Tb), seven free‐ranging animals were captured and implanted with intra‐abdominal Tb loggers and radio‐tracked during years 2004–2006. The average size of the home ranges was 306±26 ha, and the average 24 h Tb was 38.0±<0.01°C during the snow‐free period (May–November). The highest and lowest Tb were usually recorded around midnight (21∶00–02∶00 h) and between 05∶00–11∶00 h, respectively, and the range of the 24 h oscillations was 1.2±0.01°C. The animals lost approximately 43±6% of body mass in winter (December–April), when the average size of the home ranges was 372±108 ha. During the 2–9‐wk periods of passivity in January–March, the average 24 h Tb decreased by 1.4–2.1°C compared to the snow‐free period. The raccoon dogs were hypothermic for 5 h in the morning (06∶00–11∶00 h), whereas the highest Tb values were recorded between 16∶00–23∶00 h. The range of the 24 h oscillations increased by approximately 0.6°C, and the rhythmicity was more pronounced than in the snow‐free period. The ambient temperature and depth of snow cover were important determinants of the seasonal Tb rhythms. The overwintering strategy of the raccoon dog resembled the patterns of winter sleep in bears and badgers, but the wintertime passivity of the species was more intermittent and the decrease in the Tb less pronounced.  相似文献   

13.
14.
Quantitative headspace analyses of rose flowers showed no significant differences in composition of emitted volatile compounds between flowers on the intact plant and cut flowers placed in vase water containing sucrose at 0, 15 or 30 g · l−1. Volatile components emitted were geraniol, nerol, citronellol, E-citral, Z-citral, methylgeranylate, trans-caryophyllene, β-cubebene, dihydro-β-ionone, 2-phenylethanol, 2-phenylethylacetate, 3,5-dimethoxytoluene and hexylacetate. When exposed to a 12-h photoperiod these components showed maximum emission during the light period and a rhythmicity which differed for the individual compounds. The circadian nature of the rhythmicity was confirmed by the continuation of rhythmicity during continued darkness or light, and was characterized by `transient' and `free running' periods of 27 and 24 h, respectively, and a phase shift of 12 h in rhythmicity when a 24-h period of continuous darkness was followed by re-exposure to a 12-h photoperiod. Rhythmicity in emission was not observed when flowers were kept in darkness before flower bud opening, but started immediately upon exposure to a 12-h photoperiod. Received: 14 April 1998 / Accepted: 28 May 1998  相似文献   

15.
《Chronobiology international》2013,30(9):1051-1061
Since fish show daily rhythms in most physiological functions, it should not be surprising that stressors may have different effects depending on the timing of exposure. In this study, we investigated the influence of time of day on the stress responses, at both physiological and cellular levels, in gilthead sea bream (Sparus aurata L.) submitted to air exposure for 30?s and then returned to their tank. One hour after air exposure, blood, hypothalamus and liver samples were taken. Six fish per experimental group (control and stressed) were sampled every 4?h during a 24-h cycle. Fish were fed in the middle of the light cycle (ML) and locomotor activity rhythms were recorded using infrared photocells to determine their daily activity pattern of behaviour, which showed a peak around feeding time in all fish. In the control group, cortisol levels did not show daily rhythmicity, whereas in the stressed fish, a daily rhythm of plasma cortisol was observed, being the average values higher than in the control group, with increased differences during the dark phase. Blood glucose showed daily rhythmicity in the control group but not in the stressed one which also showed higher values at all sampling points. In the hypothalamus of control fish, a daily rhythm of corticotropin-releasing hormone (crh) gene expression was observed, with the acrophase at the beginning of the light phase. However, in the stressed fish, this rhythm was abolished. The expression of crh-binding protein (crhbp) showed a peak at the end of the dark phase in the control group, whereas in the stressed sea bream, this peak was found at ML. Regarding hepatic gene expression of oxidative stress biomarkers: (i) cytochrome c oxidase 4 showed daily rhythmicity in both control and stressed fish, with the acrophases located around ML, (ii) peroxiredoxin (prdx) 3 and 5 (prdx5) only presented daily rhythmicity of expression in the stressed fish, with the acrophase located at the beginning of the light cycle and (iii) uncoupling protein 1 showed significant differences between sampling points only in the control group, with significantly higher expression at the beginning of the dark phase. Taken together, these results indicate that stress response in gilthead sea bream is time-dependent as cortisol level rose higher at night, and that different rhythmic mechanisms interplay in the control of neuroendocrine and cellular stress responses.  相似文献   

16.
The effects of food on biological rhythms may influence the findings of chronopharmacological studies. The present study evaluated the influence of a restricted food access during the rest (light) span of nocturnally active Wistar rats on the 24 h time organization of biological functions in terms of the circadian rhythms of temperature (T), heart rate (HR), and locomotor activity (LA) in preparation for subsequent studies aimed at evaluating the influence of timed food access on the pharmacokinetics and pharmacodynamics of medications. Ten‐wk‐old male Wistar rats were housed under controlled 12:12 h light:dark (LD) environmental conditions. Food and water were available ad libitum, excepted during a 3 wk period of restriction. Radiotelemetry transmitters were implanted to record daily rhythms in T, HR, and LA. The study lasted 7 wk and began after a 21‐d recovery span following surgery. Control baseline data were collected during the first wk (W1). The second span of 3 wk duration (W2 to W4) consisted of the restricted feeding regimen (only 3 h access to food between 11:00 and 14:00 h daily) during the L (rest span) under 12:12 h LD conditions. The third period of 3 wk duration (W5 to W7) consisted of the recovery span with ad libitium normal feeding. Weight loss in the amount of 5% of baseline was observed during W1 with stabilization of body weight thereafter during the remaining 2 wk of food restriction. The 3 h restricted food access during the L rest span induced a partial loss of circadian rhythmicity and the emergence of 12 h rhythms in T, HR, and LA. Return to ad libitum feeding conditions restored circadian rhythmicity in the manner evidenced during the baseline control span. Moreover, the MESORS and amplitudes of the T, HR, and LA 24 h patterns were significantly attenuated during food restriction (p<0.001) and then returned to initial values during recovery. These changes may be interpreted as a masking effect, since T, HR, and LA are known to directly react to food intake. The consequences of such findings on the methods used to conduct chronokinetic studies, such as the fasting of animals the day before testing, are important since they may alter the temporal structure of the organism receiving the drug and thereby compromise findings.  相似文献   

17.
Using in vivo microdialysis, effects of retinally perceived light on pineal melatonin release and its rhythmicity was examined in the pigeon. In the first experiment, light-induced suppression of pineal melatonin release was studied. Although light given to the whole body during the dark strongly suppressed pineal melatonin release to a daytime level, light exclusively delivered to the eyes did not remarkably inhibit melatonin release. In the second experiment, in order to determine whether retinally perceived light has phase-shifting effects on pineal melatonin rhythms, pigeons were given a single light pulse of 2 h at circadian time (CT) 18 and the phases of the second cycle after the light pulse were compared with those of control pigeons without the light pulse. In this experiment, phase advances of pineal melatonin rhythms were observed when the light was given to the whole body but not when only the eyes were illuminated. In a third experiment, after entrainment to light-dark 12:12 (LD 12:12) cycles, birds whose heads were covered with black tapes were transferred into constant light (LL) conditions and only the eyes were exposed to new LD cycles for 7 days (the phase was advanced by 6 h from the previous cycles) using a patching protocol. This procedure, however, could not entrain pineal melatonin rhythms to the retinal LD cycles. These results indicate that the eyes are not essential for photic regulation of pineal melatonin release and its rhythmicity in the pigeon.Abbreviations CT circadian time - LD light-dark - LL constant light - SCN suprachiasmatic nucleus - LLdim constant dim light - NE norepinephrine - SCG superior cervical ganglia - WB whole body - E eye - EX extraretina - C control  相似文献   

18.
《Chronobiology international》2013,30(6):1263-1271
Several studies suggest that the circadian systems of diurnal mammals respond differently to daytime light than those of nocturnal mammals. We hypothesized that the photosensitive “clock” gene Per1 would respond to light exposure during subjective day in the suprachiasmatic nucleus of the diurnal rodent, Octodon degus. Tissue was collected 1.5–2?h after a 30?min light pulse presented at five timepoints across the 24?h day and compared to controls maintained under conditions of constant darkness. Per1 mRNA was quantified using in situ hybridization. Results showed that the rhythmicity and photic responsiveness of Per1 in the degu resembles that of nocturnal animals. (Author correspondence: )  相似文献   

19.
The circadian pacemaker and sleep homeostasis play pivotal roles in vigilance state control. It has been hypothesized that age-related changes in the human circadian pacemaker, as well as sleep homeostatic mechanisms, contribute to the hallmarks of age-related changes in sleep, that is, earlier wake time and reduced sleep consolidation. Assessments of circadian parameters in healthy young (~20–30 years old) and older people (~65–75 years old)—in the absence of the confounding effects of sleep, changes in posture, and light exposure—have demonstrated that an earlier wake time in older people is accompanied by about a 1h advance of the rhythms of core body temperature and melatonin. In addition, older people wake up at an earlier circadian phase of the body temperature and plasma melatonin rhythm. The amplitude of the endogenous circadian component of the core body temperature rhythm assessed during constant routine and forced desynchrony protocols is reduced by 20–30% in older people. Recent assessments of the intrinsic period of the human circadian pacemaker in the absence of the confounding effects of light revealed no age-related reduction of this parameter in both sighted and blind individuals. Wake maintenance and sleep initiation are not markedly affected by age except that sleep latencies are longer in older people when sleep initiation is attempted in the early morning. In contrast, major age-related reductions in the consolidation and duration of sleep occur at all circadian phases. Sleep of older people is particularly disrupted when scheduled on the rising limb of the temperature rhythm, indicating that the sleep of older people is more susceptible to arousal signals genernpated by the circadian pacemaker. Sleep-homeostatic mechanisms, as assayed by the sleep-deprivation–induced increase of EEG slow-wave activity (SWA), are operative in older people, although during both baseline sleep and recovery sleep SWA in older people remains at lower levels. The internal circadian phase advance of awakening, as well as the age-related reduction in sleep consolidation, appears related to an age-related reduction in the promotion of sleep by the circadian pacemaker during the biological night in combination with a reduced homeostatic pressure for sleep. Early morning light exposure associated with this advance of awakening in older people could reinforce the advanced circadian phase. Quantification of the interaction between sleep homeostasis and circadian rhythmicity contributes to understanding age-related changes in sleep timing and quality. (Chronobiology International, 17(3), 285–311, 2000)  相似文献   

20.
Summary

Errant polychaete worms in the Orders Eunicida (family Eunicidae) and Phyllodocida (families Nereidae and Polynoidae) exhibit a highly developed biorhythmic capability. The Pacific palolo worms are well known for a precisely timed annual breeding event in which mass spawning occurs at a particular time of day, on one day per year, that day having a fixed relationship to the lunar period. Nereidae and Polynoidae exhibit photoperiodic responses that determine the breeding season by regulation of oocyte growth. Nereis virens shows short-term cycles of foraging activity; automated recording of these patterns has revealed four distinct behaviour rhythm phenotypes: circadian, tidal, lunidian and arrhythmic, the last phenotype being expressed during the photoperiod induced growth diapause. The Eunicids and Phyllodocids are represented in the fossil record by scolecodonts, their fossilised jaws. There was a major radiation of these polychaetes during the Ordovician and the earliest suggested polychaete fossils are from the Cambrian. The simultaneous expression of tidal and circadian rhythmicity is characteristic of intertidal animals and it is likely that this complex behavioural repertoire was found in the ancestors of modern terrestrial forms, such as tetrapods and arthropods, prior to their emergence onto land during the Carboniferous and Silurian periods at least 400 Ma. The period of the earth's rotation, and hence day length and tidal period, has long been known to be increasing, and additionally the moon to be retreating from the earth, due to the phenomenon of tidal friction caused by the gravitational interactions between the moon and the earth. These changes are significant over a geological time scale. Consequently, the length of day was substantially less (and the number of days in a year more) than at present in the Cambrian and Ordovician periods. Recent theoretical analysis of the period of the earth's rotation suggests that the day length prior to a critical period (t crit ) around 1800 Ma may have been stable, with a length of only 4 h. At that time a period of more rapid change in the dynamics of the rotation was initiated. The implications of this theory for the evolution of the biological clock are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号