首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Fabry disease is a progressive disease characterized by an enzymatic deficiency of acid alpha-galactosidase and glycosphingolipids storage within the lysosomes. The disease has two phenotypes: classic and nonclassic. Excessive daytime sleepiness is a common sign reported by patients and can be caused by a circadian rhythm sleep disorder. Activity and rest cycle, variation of body temperature and melatonin biosynthesis are known rhythmicity markers. In the face of these evidences, our goal was to evaluate the rhythmic profile in Fabry’s disease patients using rhythmicity markers. For this purpose, we recruited 17 patients diagnosed with Fabry disease (11 classic and 6 nonclassic variant) that answered the Epworth Sleepiness Scale and the Morningness–Eveningness questionnaire adapted from Horne and Ostberg; recorded activity and body temperature rhythms by an actigraphy during at least 10 days and collected urine to assess 6-sulfatoxymelatonin excretion load during the day (from the second urine in the morning until 7 p.m.) and night (starting from 7 p.m. until the first urine in the morning of the following day). We observed that control subjects presented higher excretion load of 6-sulfatoxymelatonin during the night (p < 0.05, d = 7.8), as expected. Patients with the nonclassic variant presented an inversion on 6-sulfatoxymelatonin daily profile (p < 0.05, d = 3.8) and there was no difference between the day and night profile of classic variant patients when compared to the other two groups. Patients with the classic variant also presented temperature period greater than 24 hours (p < 0.05, d = 2.0). Therefore, we came to the conclusion that there is an alteration in the circadian rhythms in Fabry disease patients, evidenced by modifications in the 6-sulfatoxymelatonin daily profile and in the body temperature rhythm period.  相似文献   

2.
ABSTRACT

COVID-19 and metabolic syndrome are devastating pandemics. Effective control of metabolic parameters and their dysfunction may help prevent or minimize the acute and devastating effects of SARS-CoV-2 by reducing the local inflammatory response and blocking the entry of the virus into cells. With such consideration in mind, we gathered data from dietary surveys conducted in nine European countries to explore the relationship between actual clock hour of the large dinner meal and also interval in minutes between it and sunset in the respective countries and death rate above the median rate of per one million people as an index of mortality due to COVID-19 infection. Clock time of the dinner meal varied between 16:00 and 21:00 h across the European counties sampled, and the correlation between dinner mealtime and death rate was strongly correlated, R = 0.7991 (two-tailed p = 0.0098), with R 2 explaining 63% of the variation within the data. This strong linear positive correlation indicates that the later the clock time of the dinner meal, the higher is the death rate (and vice versa). The relationship between meal timing in reference to sunset, utilized as a gross surrogate marker of the activity/rest synchronizer of circadian rhythms, and death rate was negative and even slightly stronger, R = ?0.8025 (two-tailed p = 0.0092), with R 2 explaining 64% of the variation within the data. This strong linear negative correlation indicates that the shorter the interval between the dinner meal and sunset, i.e., the closer the time of the largest meal of the day to bedtime, the greater is the death rate (and vice versa). Our preliminary approach to nighttime eating, in terms of the day’s largest caloric intake, as a risk factor for the predisposing conditions of obesity, metabolic syndrome, type 2 diabetes, and other commonly associated comorbidities of being overweight, and death from COVID-19 infection reveals strong correlation with the time of the dinner meal, both in terms of its actual clock and circadian time.  相似文献   

3.
ABSTRACT

In mammals, daily physiological events are regulated by the circadian rhythm, which comprises two types of internal clocks: the central clock and peripheral clocks. Circadian rhythm plays an important role in maintaining physiological functions including the sleep-wake cycle, body temperature, metabolism and organ functions. Circadian rhythm disorder, which is caused, for example, by an irregular lifestyle or long-haul travel, increases the risk of developing disease; therefore, it is important to properly maintain the rhythm of the circadian clock. Food and the circadian clock system are known to be closely linked. Studies on rodents suggest that ingesting specific food ingredients, such as the flavonoid nobiletin, fish oil, the polyphenol resveratrol and the amino acid L-ornithine affects the circadian clock. However, there are few reports on the foods that affect these circadian clocks in humans. In this study, therefore, we examined whether L-ornithine affects the human central clock in a crossover design placebo-controlled human trial. In total, 28 healthy adults (i.e. ≥20 years) were randomly divided into two groups and completed the study protocol. In the 1st intake period, participants were asked to take either L-ornithine (400 mg) capsules or placebo capsules for 7 days. After 7 days’ interval, they then took the alternative test capsules for 7 days in the 2nd intake period. On the final day of each intake period, saliva was sampled at various time points in the dim light condition, and the concentration of melatonin was quantified to evaluate the phase of the central clock. The results revealed that dim light melatonin onset, a recognized marker of central circadian phase, was delayed by 15 min after ingestion of L-ornithine. Not only is this finding an indication that L-ornithine affects the human central clock, but it also demonstrates that the human central clock can be regulated by food ingredients.  相似文献   

4.
Previous studies indicate that solar clock (daily changes in the Earth’s surface illumination) is a main zeitgeber for human circadian system. It has been shown that human biological clock is weakly adjusted to such changes in social clock as daylight saving time (DST). There are two changes of social clock in Russian Federation: on 25 March 2011, DST has been replaced by permanent DST (DSTp), which was subsequently revoked on 26 October 2014 (non-DSTp). These manipulations with social clock may lead to prolonged disturbances of human circadian system. Our hypothesis is that during period of DSTp, the dissociation between social and biological clocks was greatest as compared with DST and non-DSTp periods. Here, we examine the effects of DSTp on the sleep timing, social jetlag (SJL), academic performance, and winter and summer seasonality of mood and behavior of 10–24-year-old inhabitants of European North of Russia. A cross-sectional retrospective analysis of questionnaire data (n = 7968) was performed using chi squared-test and analysis of covariance. Our findings indicate that SJL (F2,7967 = 31.9; p < 0.0001; η2 = 0.009), and winter pattern of mood seasonality (χ22,7967 = 10.5; p < 0.01) were increased in adolescents during the period of DSTp as compared with DST and non-DSTp periods. The largest increase in SJL was occurred in ages between 10 and 17-year-olds. The finding suggests that increase in SJL can be attributed to a later rise time on free days (F2,7967 = 44.9; p < 0.0001; η2 = 0.012). Similar changes were observed in three subsamples obtained in Syktyvkar, Petrozavodsk, and Vorkuta. Effect sizes of studied relationships were small or very small. The greatest effect sizes (η2 ~ 0.05) were observed in Arctic city of Vorkuta indicating that in polar region, solar clock is still stronger zeitgeber for human circadian system, than the social clock. In conclusion, we have shown for the first time that there is a greatest dissociation between social and biological clocks during the period of DSTp which potentially exerts a negative influence on adolescents’ sleep habits, mood, and behavior. Our data indicate that “non-DSTp” social clock system most suitable for prevention dissociation between social and biological clocks.  相似文献   

5.
Cloistered monks and nuns adhere to a 10-century-old strict schedule with a common zeitgeber of a night split by a 2- to 3-h-long Office (Matins). The authors evaluated how the circadian core body temperature rhythm and sleep adapt in cloistered monks and nuns in two monasteries. Five monks and five nuns following the split-sleep night schedule for 5 to 46 yrs without interruption and 10 controls underwent interviews, sleep scales, and physical examination and produced a week-long sleep diary and actigraphy, plus 48-h recordings of core body temperature. The circadian rhythm of temperature was described by partial Fourier time-series analysis (with 12- and 24-h harmonics). The temperature peak and trough values and clock times did not differ between groups. However, the temperature rhythm was biphasic in monks and nuns, with an early decrease at 19:39?±?4:30?h (median?±?95% interval), plateau or rise of temperature at 22:35?±?00:23?h (while asleep) lasting 296?±?39?min, followed by a second decrease after the Matins Office, and a classical morning rise. Although they required alarm clocks to wake-up for Matins at midnight, the body temperature rise anticipated the nocturnal awakening by 85?±?15?min. Compared to the controls, the monks and nuns had an earlier sleep onset (20:05?±?00:59?h vs. 00:00?±?00:54?h, median?±?95% confidence interval, p?=?.0001) and offset (06:27?±?0:22?h, vs. 07:37?±?0:33?h, p?=?.0001), as well as a shorter sleep time (6.5?±?0.6 vs. 7.6?±?0.7?h, p?=?.05). They reported difficulties with sleep latency, sleep duration, and daytime function, and more frequent hypnagogic hallucinations. In contrast to their daytime silence, they experienced conversations (and occasionally prayers) in dreams. The biphasic temperature profile in monks and nuns suggests the human clock adapts to and even anticipates nocturnal awakenings. It resembles the biphasic sleep and rhythm of healthy volunteers transferred to a short (10-h) photoperiod and provides a living glance into the sleep pattern of medieval time. (Author correspondence: )  相似文献   

6.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

7.
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.  相似文献   

8.
9.
Mangrove crickets have a circatidal activity rhythm (~12.6 h cycles) with a circadian modulation under constant darkness (DD), whereby activity levels are higher during subjective night low tides than subjective day low tides. This study explored the locomotor activity rhythm of mangrove crickets under constant light (LL). Under LL, the crickets also exhibited a clear circatidal activity rhythm with a free-running period of 12.6 ± 0.26 h (mean ± SD, n = 6), which was not significantly different from that observed under DD. In contrast, activity levels were almost the same between subjective day and night, unlike those under DD, which were greater during subjective night. The loss of circadian modulation under LL may be explained by the suspension of the circadian clock in these conditions. These results strongly suggest that the circatidal activity rhythm is driven by its own clock system, distinct from the circadian clock.  相似文献   

10.
The quality of life of hemodialysis (HD) patients is hampered by reduced nocturnal sleep quality and excessive daytime sleepiness. In addition to the sleep/wake cycle, levels of circadian biomarkers (e.g. melatonin) are disturbed in end-stage renal disease (ESRD). This suggests impaired circadian clock performance in HD patients, but the underlying mechanism is unknown. In this observational study, diurnal rhythms of sleep, serum melatonin and cortisol concentrations and clock gene mRNA expression are compared between HD patients (n?=?9) and healthy control subjects (n?=?9). In addition, the presence of circulating factors that might affect circadian rhythmicity is tested in vitro with cell culture experiments. Reduced sleep quality (median sleep onset latency [interquartile range] of 23.9 [17.3]?min for patients versus 5.0 [10] minutes for controls, p?<?0.01; mean (± SD) sleep efficiency 70.2?±?8.1% versus 82.9?±?10.9%, p?=?0.02 and mean awake minutes after sleep onset 104.8?±?27.9 versus 54.6?±?41.6 minutes, p?= 0.01) and increased daytime sleepiness (mean Epworth Sleepiness Score of 10.0?±?4.8 versus 3.9?±?2.0, p?<?0.01) were confirmed in HD patients. Reduced nocturnal melatonin concentrations (1 AM: 98.1 [122.9] pmol/L versus 12.5 [44.2] pmol/L, p?= 0.019; 5 AM: 114.0 [131.6] pmol/L versus 11.8 [86.8] pmol/L, p?= 0.031) and affected circadian control of cortisol rhythm and circadian expression of the clock gene REV-ERBα were found. HD patient serum had a higher capacity to synchronize cells in vitro, suggesting an accumulated level of clock resetting compounds in HD patients. These compounds were not cleared by hemodialysis treatment or related to frequently used medications. In conclusion, the abovementioned results strongly suggest a disturbance in circadian timekeeping in peripheral tissues of HD patients. Accumulation of clock resetting compounds possibly contributes to this. Future studies are needed for a better mechanistic understanding of the interaction between renal failure and perturbation of the circadian clock.  相似文献   

11.
The aim of this study was to investigate whether the entrainment of light cue is affected or not in diabetic animals. We found that the individual light/dark (LD) reversal showed a tissue- and gene-specific effect on the circadian phases of peripheral clock genes, which was generally similar between the control and diabetic rats. In the liver and heart, the peak phases of examined clock genes (Bmal1, Rev-erbα, Per1, and Per2) were slightly shifted by 0~4 h in the liver and heart of control and diabetic rats. However, we found that the peak phases of these clock genes were greatly shifted by 8~12 h after the LD reversal for 7 days in the pineal gland of both control and diabetic rats. However, the activity rhythm was greatly different between two groups. After the individual LD reversal, the activity rhythm was completely shifted in the control rats but retained in the diabetic rats. These observations suggested that the behavioral rhythm of diabetic rats may be uncoupled from the master clock after the individual LD reversal. Moreover, we also found that the serum glucose levels of diabetic rats kept equally high throughout the whole day without any shift of peak phase after the individual reversal of LD cycle. While the serum glucose levels of control rats were tightly controlled during the normal and LD reversal conditions. Thus, the impaired insulin secretion induced uncontrollable serum glucose level may result in uncoupled activity rhythm in the diabetic rats after the individual LD reversal.  相似文献   

12.
The expression rhythms of clock genes, such as Per1, Per2, Bmal1, and Rev-erb α, in mouse peripheral clocks, are entrained by a scheduled feeding paradigm. In terms of food composition, a carbohydrate-containing diet is reported to cause strong entrainment through insulin secretion. However, it is unknown whether human diets entrain peripheral circadian clocks. In this study, we used freeze-dried diets for type 2 diabetes (DB) and chronic kidney disease (CKD), as well as low-carbohydrate diets. After 24 h of fasting, PER2::LUC knock-in mice were given access to food for 2 days during inactive periods, and bioluminescence rhythm was then measured using an in vivo imaging system. AIN-93M, the control mouse diet with a protein:fat:carbohydrate (PFC) ratio of 14.7:9.5:75.8, caused a significant phase advance (7.3 h) in the liver clock compared with that in 24 h fasted mice, whereas human diets caused significant but smaller phase advances (4.7–6.2 h). Compared with healthy and high fat/sucrose-induced DB mice, adenine-induced CKD mice showed attenuation of a phase-advance with a normal diet. There were no significant differences in phase-advance values between human diets (normal, DB, and CKD). In addition, a normal-carbohydrate diet (PFC ratio of 20.3:23.3:56.4) and a low-carbohydrate diet (PFC ratio of 36.4:42.9:20.7) caused similar phase advances in peripheral clocks. The present results strongly suggest that scheduled feeding with human diets can cause phase advances in the peripheral clocks of not only healthy, but also DB and CKD mice. This discovery provides support to the food-induced entrainment of peripheral clocks in human clinical trials.  相似文献   

13.
Emotional and behavioral problems have been considered an indicative of mental disorder in children. Mental health problems affect 10–20% of children and adolescents living in low-income and middle-income countries. Evidence suggests that disruptions in the biological rhythm may be a primary cause of emotional and behavioral changes, which affects several psychological functions and moods. Thus, this study aimed at verifying the association between biological rhythm and emotional and behavioral problems in schoolchildren living in Southern Brazil. This is a cross-sectional study with a school-based sample conducted between August 2015 and November 2016. The presence of emotional and behavioral problems in children was verified by the Strengths and Difficulties Questionnaire (SDQ), parents’ version. This is a 25-item assessment questionnaire used to screen mental health problems in children and adolescents (from 4 to 17 years of age) in the last 6 months. The Biological Rhythm Interview of Assessment in Neuropsychiatry-Kids (BRIAN-K) was used to measure the degree of biological rhythm disruption. The BRIAN-K consists of 20 items; from among these, 17 items are added to generate a quantitative measure, with greater scores indicating more biological rhythm disruption. The final score can also be divided into four subscales: sleep, social rhythm, eating pattern and overall activities. A total of 609 children responded to the assessment instruments. With regard to parents or primary caregiver, 596 completed the assessment and 13 (2%) were not located or refused to participate in the study. Thus, 596 dyads were included in the analysis. Children with emotional and behavioral problems presented higher scores in all domains of BRIAN-K: sleep, social, activity, eating pattern and total score (p < 0.001). The following variables remained associated with emotional and behavioral problems after adjusted analysis: BRIAN-K total score (p < 0.001) and all subscales sleep (p < 0.001), social (p < 0.001), activity (p < 0.001) and eating pattern (p < 0.001). Children with emotional and behavioral problems presented higher biological rhythm disruption when compared with children without emotional and behavioral problems. Our study emphasizes the importance of biological rhythm and its influence on emotional and behavioral problems in schoolchildren. Early detection of any biological rhythm disruption may enhance further assessment of any eventual emotional and behavioral problem and even a psychopathology.  相似文献   

14.
《Chronobiology international》2013,30(10):1223-1230
The rhythms of activity across the 24-h sleep-wake cycle, determined in part by the circadian clock, change with aging. Few large-scale studies measured the activity rhythm objectively in the general population. The present population-based study in middle-aged and elderly persons evaluated how activity rhythms change with age, and additionally investigated sociodemographics, mental health, lifestyle, and sleep characteristics as determinants of rhythms of activity. Activity rhythms were measured objectively with actigraphy. Recordings of at least 96?h (138?±?14?h, mean?±?SD) were collected from 1734 people (age: 62?±?9.4?yrs) participating in the Rotterdam Study. Activity rhythms were quantified by calculating interdaily stability, i.e., the stability of the rhythm over days, and intradaily variability, i.e., the fragmentation of the rhythm relative to its 24-h amplitude. We assessed age, gender, presence of a partner, employment, cognitive functioning, depressive symptoms, body mass index (BMI), coffee use, alcohol use, and smoking as determinants. The results indicate that older age is associated with a more stable 24-h activity profile (β?=?0.07, p?=?0.02), but also with a more fragmented distribution of periods of activity and inactivity (β?=?0.20, p?<?0.001). Having more depressive symptoms was related to less stable (β?=??0.07, p?=?0.005) and more fragmented (β?=?0.10, p?<?0.001) rhythms. A high BMI and smoking were also associated with less stable rhythms (BMI: β?=??0.11, p?<?0.001; smoking: β?=??0.11, p?<?0.001) and more fragmented rhythms (BMI: β?=?0.09, p?<?0.001; smoking: β?=?0.11, p?<?0.001). We conclude that with older age the 24-h activity rhythm becomes more rigid, whereas the ability to maintain either an active or inactive state for a longer period of time is compromised. Both characteristics appear to be important for major health issues in old age.  相似文献   

15.
High-frequency action potentials are mediated by voltage-gated sodium channels, composed of one large α subunit and two small β subunits, encoded mainly by SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B genes in the brain. These play a key role in epilepsy, with the most commonly mutated gene in epilepsy being SCN1A. We examined whether polymorphisms in the above genes affect epilepsy risk in 1,529 epilepsy patients and 1,935 controls from four ethnicities or locations: Malay, Indian, and Chinese, all from Malaysia, and Chinese from Hong Kong. Of patients, 19 % were idiopathic, 42 % symptomatic, and 40 % cryptogenic. We genotyped 43 polymorphisms: 27 in Hong Kong, 28 in Malaysia, and 12 in both locations. The strongest association with epilepsy was rs3812718, or SCN1A IVS5N+5G>A: odds ratio (OR) = 0.85 for allele G (p = 0.0009) and 0.73 for genotype GG versus AA (p = 0.003). The OR was between 0.76 and 0.87 for all ethnicities. Meta-analysis confirmed the association (OR = 0.81 and p = 0.002 for G, and OR = 0.67 and p = 0.007 for GG versus AA), which appeared particularly strong for Indians and for febrile seizures. Allele G affects splicing and speeds recovery from inactivation. Since SCN1A is preferentially expressed in inhibitory neurons, G may decrease epilepsy risk. SCN1A rs10188577 displayed OR = 1.20 for allele C (p = 0.003); SCN2A rs12467383 had OR = 1.16 for allele A (p = 0.01), and displayed linkage disequilibrium with rs2082366 (r 2 = 0.67), whose genotypes tended toward association with SCN2A brain expression (p = 0.10). SCN1A rs2298771 was associated in Indians (OR = 0.56, p = 0.005) and SCN2B rs602594 with idiopathic epilepsy (OR = 0.62, p = 0.002). Therefore, sodium channel polymorphisms are associated with epilepsy.  相似文献   

16.
ABSTRACT

Recently we evaluated by actigraphy the rest-activity circadian rhythm (RAR) in breast cancer (BC) survivors at 5 years from primary diagnosis, as well as in a control group with similar age and body mass index (BMI). RAR, analyzed by Cosinor method, resulted significantly different in BC survivors compared to healthy subjects: BC survivors showed lower values of MESOR and Amplitude (A), while acrophase (φ) was similar in the two groups.

Now, using non-parametric methods we have detected Interdaily Stability (IS), Intradaily Variability (IV), nocturnal activity (L5), and daily activity (M10) on the same sample of previous study: 15 BC survivors at 5 years from the primary diagnosis (mean age = 56.7 ± 6.6 yrs; mean BMI = 24.5 ± 3.8 Kg/m2) and 13 healthy controls (mean age = 54.4 ± 7.2 yrs; mean BMI = 25.2 ± 2.8 Kg/m2).

The non-parametric indices showed that in BC-group IV was significantly higher than in Ctrl-group (0.86 vs. 0.65 a.u. in BC and Ctrl, respectively; p <.01), while L5 (11.27 vs. 34.41 a.c. in BC and Ctrl, respectively; p <.0001) and M10 (326.82 vs. 428.07 a.c. in BC and Ctrl, respectively; p <.01) were significantly lower compared to Ctrl-group.

The data suggest that BC patients need constant clinical assessment of RAR characteristics along the years following the primary diagnosis. The analysis of RAR in all its components, parametric and non-parametric, is important to detect alterations in the sleep-wake cycle and can be useful for developing new strategies for health protection, such as structured and tailored physical activity programs, to improve circadian activity level in order to raise the quality of life in BC survivors.  相似文献   

17.
ABSTRACT

Rest-activity circadian rhythm (RAR) is a marker of the circadian timing system. Particular attention has been given to RAR characteristics in cancer diseases. Specifically, alterations of RAR parameters have been found, at different stages of clinical pathway, in breast cancer (BC) patients. No studies to date have analyzed RAR alterations in breast cancer survivors several years after the diagnosis. The aim of this study was to determine RAR by actigraphy in a population of BC survivors at 5 years after the primary diagnosis, and to compare their RAR characteristics with healthy controls. The study sample was 28 women: 15 BC survivors at 5 years from the primary diagnosis (BC-group) and 13 healthy controls (Ctrl-group), matched for age and body mass index. All participants have been monitored for 7 days by actigraphy to evaluate RAR. A statistically significant circadian rhythm (T = 24) was found in all 28 subjects (p < .001). The group analysis revealed a significant RAR both in BC- and Ctrl-group (p < .001). The acrophase was not different between the BC- and Ctrl-group (15:09 vs. 15:01 hr:min in BC- and Ctrl-group, respectively). In contrast, the MESOR (Midline Estimating Statistic of Rhythm) and the amplitude were lower in the BC-group with respect to the Ctrl-group. Indeed, the MESOR was 192.0 vs. 276.4 activity counts in BC- and Ctrl-group, respectively (p < .001), while the amplitude was 167.0 vs. 222.6 activity counts in BC- and Ctrl-group, respectively (p < .001). These results provide the first experimental evidence of alterations in RAR parameters in BC survivors at 5 years after the primary diagnosis. Larger studies with a prospective design are needed to assess the role of RAR in the quality of life and prognosis in BC survivors.  相似文献   

18.
ABSTRACT

The continuous, longitudinal nature of accelerometry monitoring is well-suited to capturing the regular 24-hour oscillations in human activity across the day, the cumulative effect of our circadian rhythm and behavior. Disruption of the circadian rhythm in turn disrupts rest-activity rhythms. Although circadian disruption is a major feature of Parkinson’s disease (PD), rest-activity rhythms and their relationship with disease severity have not been well characterized in PD. 13 PD participants (Hoehn & Yahr Stage [H&Y] 1–3) wore a Philips Actiwatch Spectrum PRO continuously for two separate weeks. Rest-activity rhythms were quantified by fitting an oscillating 24-hour cosinor model to each participant-day of activity data. One-way ANOVAs adjusted for demographics revealed significant variation in the amount (MESOR, F = 12.76, p < .01), range (Amplitude, F = 9.62, p < .01), and timing (Acrophase, F = 2.7, p = .05) of activity across H&Y Stages. Those with higher H&Y Stages were significantly more likely to be active later in the day, where-as those who shifted between H&Y Stages during the study were significantly more active than those who did not change H&Y Stage. Being active later in the day was also significantly associated with higher scores on the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Section III (motor symptom severity, p = .02), Section II (self-reported impact of motor symptoms on daily living, p = .01), and Total Score (p = .01) in an adjusted linear regression model; significant associations between MDS-UPDRS scores and activity levels were observed only in the unadjusted model. These findings demonstrate that continuous actigraphy is capable of detecting rest-activity disruption in PD, and provides preliminary evidence that rest-activity rhythms are associated with motor symptom severity and H&Y Stage.  相似文献   

19.
ABSTRACT

We evaluated the daily changes in immunological and hematological factors in tilapia (Oreochromis niloticus) after an immunization period with a subsequent challenge. Experiments were divided into two phases: Phase 1 (immunization): 144 fish were distributed into two groups with 72 fish in six tanks. One group (T1) was immunized, comprising six vaccination time points (ZT schedule = ZT2 h, ZT6 h, ZT10 h, ZT14 h, ZT18 h, ZT22 h). The same schedule was applied to the other group, but with saline solution (non-vaccinated: T2). Both groups remained in the laboratory for 30 days (considered the immunization period). Phase 2 (challenge): on day 30, both vaccinated and non-vaccinated groups were challenged with Streptococcus agalactiae (2.0 × 107 CFU mL?1) following the same ZT schedule to stimulate the immune response without leading to widespread infection and mortality. On day 45, blood and head kidney samples were collected during the same ZT schedule. The variations in time of the following parameters within each group were evaluated: hematology, peroxidase activity, IgM, tnf-α3, tgf-β1, il-1β and il-12 gene expression. No significant mortality was observed for the groups or the ZT schedule (p > 0.05). Daily rhythms with diurnal acrophases were found in T2 for il12, tnf-α3 and tgf-β1 expression gene, while the acrophases of the peroxidase level, hematocrit and thrombocytes were at nighttime (p < 0.05). In contrast, most of the parameters in the vaccinated tilapia showed no daily rhythms (p > 0.05), except IgM. For all the parameters, the interaction effect between time and treatment (vaccinated and non-vaccinated groups) depended on ZT. Our results reveal that the humoral and non-specific immune system displayed a circadian rhythm based on the light-dark cycle, which could be affected by the vaccination procedure in tilapia.  相似文献   

20.
The locomotor activity rhythm of the isopod, Porcellio olivieri, was investigated in Gannouch site in the south of Tunisia. The rhythm was monitored under constant temperature in individual animals in winter under two simultaneous regimens: the light–dark (LD) cycle and the continuous darkness (DD). Results revealed that whatever regimens, actograms, and mean activity curves showed that specimens of P. olivieri concentrated their activity during the experimental and subjective night. The species exhibited a locomotor rhythm period significantly shorter under LD (T = 23h13 ± 0h44) than DD (τ = 24h28 ± 0h58). However, the locomotor activity rhythm was less stable and the individuals were significantly more active under entraining conditions than constant darkness. The activity pattern of this species will be discussed as an adaptative strategy to respond to environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号