首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The intracellular localization and isozyme distribution of hexokinase were studied during rabbit reticulocyte maturation and aging. In reticulocytes 50% of the enzyme was particulate while in the mature erythrocytes all the hexokinase activity was soluble. The bound enzyme co-sediments with mitochondria and by column chromatography it was found to be hexokinase Ia. The cytosol of reticulocytes contains hexokinase Ia (38%) and hexokinase Ib (62%) while the mature erythrocytes contain only hexokinase Ia. The amount of bound hexokinase decreases very quickly during cell maturation and aging as was shown by following in vivo reticulocyte maturation or by analysis of hexokinase compartmentation in cells of different ages, obtained by density gradient ultracentrifugations. A role for this intracellular distribution of hexokinase is suggested.  相似文献   

2.
In rabbit reticulocytes more than half of the total hexokinase activity is mitochondrial bound and shows a fast decay during reticulocyte maturation. During in vitro incubation of rabbit reticulocytes, Ca2+ increases the decay of hexokinase while salicylhydroxamate (SHAM), an inhibitor of lipoxygenase, reduces the decay. Swelling of mitochondria, by incubation of the cells in hypotonic solutions, greatly enhances hexokinase decay, but both the Ca2+ and SHAM are still appreciable suggesting that Ca2+ and the swelling act by additive mechanisms, both able to influence hexokinase decay. This was confirmed by incubation of rabbit brain mitochondria in hypotonic solutions which does not promote any hexokinase decay, while the presence of Ca2+ does. Analyses of hexokinase isozymic pattern after incubation of reticulocytes in hypotonic solution both with and without Ca2+ and SHAM showed that the decay of hexokinase mainly involves the mitochrondrial bound isozymic forms.Abbreviations SHAM Salicylhydroxamate - HPLC High-Performance Liquid Chromatography  相似文献   

3.
Hexokinase in mammalian brain is particulate and usually considered to be bound to the outer mitochondrial membrane. Investigation of rabbit brain mitochondria prepared either by differential centrifugation and discontinuous density gradient centrifugation has provided evidence that this particulate fraction also contains endoplasmic vesicles and synaptosomes. Solubilization of the bound hexokinase by different combinations of detergents and metabolites has proved the existence of different hexokinase binding sites. Electron microscopic examination of hexokinase location by immuno-gold labelling techniques confirmed, that hexokinase is indeed predominantly bound to mitochondria but that a significant proportion is also bound to non-mitochondrial membranes. Attempts to quantify this distribution were unsuccessful since different figures were obtained using anti-hexokinase IgG affinity purified on immobilized native or denatured hexokinase. Binding studies of the purified rabbit brain mitochondrial hexokinase to rabbit liver mitochondria and microsomes confirmed that in addition to a binding site on mitochondria there is another binding site on microsomes. The N-terminal sequence of hexokinase has been shown to be important for mitochondria binding and also for microsome binding. These results suggest that the intracellular localization of hexokinase in rabbit brain is not exclusively mitochondrial and that the metabolic role of this enzyme should be reconsidered by including a binding site on the endoplasmic reticulum.  相似文献   

4.
1. In rat submandibular gland, hexokinase was distributed not only in cytosol fraction but also in mitochondrial fraction. 2. Glucose-6-phosphate and ATP were most effective substances on releasing hexokinase from mitochondria. However, all the hexokinase in mitochondria could not be extracted with these substances. 3. Concentrations of glucose-6-phosphate and ATP were decreased with the administration of epinephrine in vivo. 4. Increase of the amount of mitochondria-bound hexokinase was observed for 5 min with epinephrine administration, and it returned to the control level after 10 min. 5. In rat submandibular gland, mitochondrial hexokinase may reversibly bind to and release from mitochondria as observed in brain.  相似文献   

5.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

6.
1. Red cell pyruvate kinase (EC 2.7.1.40) and hexokinase (EC 2.7.1.1) in high and low potassium (K) dogs were shown to exist as multiple forms which were separable by electrophoresis and ion-exchange chromatography. The R2-type pyruvate kinase, which was determined to be a young type enzyme in canine red cells, was shown to be the predominant form of pyruvate kinase in high K cells. 2. The M2-type pyruvate kinase, a prototype isozyme in erythroid cells, existed in high K dog erythrocytes as well as in high K and low K dog reticulocytes. 3. Isozyme analysis of high K red cell hexokinase also showed a profile similar to that obtained for low K reticulocytes. 4. These results seem to reflect the immaturity of high K erythrocytes, which suggest that an abnormal cell differentiation or maturation may occur at an early stage of erythroid cell proliferation in high K dogs.  相似文献   

7.
In rabbit reticulocytes, the hexokinase (EC 2.7.1.1)-specific activity is 4-5 times that of corresponding mature red cells. Immunoprecipitation of hexokinase by a polyclonal antibody made in vitro shows that this maturation-dependent hexokinase decay is not due to accumulation of inactive enzyme molecules but to degradation of hexokinase. A cell-free system derived from rabbit reticulocytes, but not mature erythrocytes, was found to catalyze the decay of hexokinae activity and the degradation of 125I-labeled enzyme. This degradation is ATP-dependent and requires both ubiquitin and a proteolytic fraction retained by DEAE-cellulose. Maximum ATP-dependent degradation was obtained at pH 7.5 in the presence of MgATP. MgGTP could replace MgATP with a relative stimulation of 0.90. 125I-Hexokinase incubated with reticulocyte extract in the presence of ATP forms high molecular weight aggregates that reach a steady-state concentration in 1 h, whereas the degradation of the enzyme is linear up to 8 h, suggesting that the formation of protein aggregates precedes enzyme catabolism. These aggregates are stable upon boiling in 2% sodium dodecyl sulfate, 3% mercaptoethanol and probably represent an intermediate step in the enzyme degradation with hexokinase and other proteins covalently conjugate to ubiquitin. That hexokinase could be conjugated to ubiquitin was shown by the formation of 125I-ubiquitin-hexokinase complexes in the presence of ATP and the enzymes of the ubiquitin-protein ligase system. Thus, the decay of hexokinase during reticulocyte maturation is ATP- and ubiquitin-dependent and suggests a new physiological role for the energy-dependent degradation system of reticulocytes.  相似文献   

8.
Species specificity of recognition by the alternative pathway of complement   总被引:12,自引:0,他引:12  
The recognition function of the alternative complement pathway was studied with isolated human and rabbit components. Zymosan and homologous and heterologous erythrocytes were used as representative activators or nonactivators. The binding affinity of Factor B and Factor H for particle-bound C3b was measured. In both species, the average affinity of Factor H for bound C3b on homologous cells (nonactivators) was eight to 10 times higher than on zymosan particles (activators). The interaction between Factor H and C3b on rabbit erythrocytes was species-specific: rabbit Factor H bound strongly to rabbit C3b on rabbit erythrocytes and also on human erythrocytes, which are nonactivators for the rabbit alternative pathway. Human Factor H bound strongly to human C3b on human erythrocytes but seven times weaker on rabbit erythrocytes, which are activators of the human alternative pathway. No substantial differences were found in the binding of Factor B to bound C3b regardless of the nature of the particle to which C3b was bound. The results indicate that in the two species studied, the molecular mechanism of recognition is analogous and that recognition is species-specific.  相似文献   

9.
Mitochondrial hexokinase from small-intestinal mucosa and brain   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The submitochondrial localization of hexokinase activity in preparations of mitochondria from the small intestine of the guinea pig was studied by conventional methods. 2. Hexokinase activity in this tissue was predominantly associated with the outer mitochondrial membrane. 3. The inactivation of mitochondrial enzymes by trypsin in iso-osmotic and hypo-osmotic conditions was also used to determine the submitochondrial localization of hexokinase activity. 4. Hexokinase activity was found to be on the outside of the outer mitochondrial membrane. 5. It was shown that both type I and type II hexokinase activities are bound to the outside of the outer mitochondrial membrane. The types are present in the same ratio as that in which they occur in the cytosol of the cell. 6. Mitochondrial hexokinase from the small intestine did not show the latency phenomenon demonstrated by mitochondrial hexokinase from brain when subjected to a variety of treatments. However, hexokinase activity was solubilized from preparations of mitochondria from the small intestine by the same treatments as for mitochondrial hexokinase from brain. 7. The submitochondrial distribution of hexokinase activity in mitochondrial preparations from rat brain was determined by the trypsin inactivation method. 8. Hexokinase activity in preparations of mitochondria from rat brain was found on the outside of the outer membrane, between the mitochondrial membranes, and within the inner mitochondrial membrane. 9. Hexokinase from rat brain showed latency properties irrespective of its submitochondrial location.  相似文献   

10.
The experiments were performed to determine the factor(s) responsible for the stimulatory effect on glycolysis in the cytosol (post-microsomal supernatant) of mitochondria isolated from Guérin epithelioma. It was found that epithelioma mitochondria contain bound hexokinase which constitutes about 50% of the total cellular hexokinase activity. The solubilized and partially purified enzyme, when added to the cytosol, stimulated glycolysis. The stimulatory effect of mitochondria on glycolysis was associated with the decrease of adenylate energy charge which was caused by an apparently very fast production of ADP in the hexokinase reaction. A large part of ATP hydrolyzed in this process was converted to IMP and NH3, which can additionally stimulate glycolysis through its stimulatory effect on phosphofructokinase. It is therefore suggested that the stimulatory effect of epithelioma mitochondria on glycolysis can be explained by production of ADP by the hexokinase associated with these mitochondria.  相似文献   

11.
Mitochondria from rabbit reticulocytes contain about 50% of the total reticulocyte hexokinases. The proportion of mitochondrial hexokinases may be changed under different metabolic conditions. Mitochondrial bound and soluble hexokinases exhibit different kinetic properties (KMATP and glucose-6-phosphate inhibition). The respiratory rate of isolated reticulocyte mitochondria in the presence of glucose depends on the glucose-6-phosphate concentration, as the ADP generation by the endogenous hexokinases is strongly inhibited by glucose-6-phosphate. In the experimental system all intermediary states of mitochondrial respiration can be adjusted between the state of maximal activity (state 3 or active state) and the controlled or resting state (state 4) by different glucose-6-phosphate levels. The stationary levels of the extramitochondrial adenine nucleotides in this experimental system have been measured. The rate of mitochondrial respiration and ATP formation depends on the extramitochondrial ATP/ADP ratio. At ratios of about 10 and lower the mitochondria are in their maximum phosphorylation state, at higher ratios the mitochondrial ATP formation is controlled by the extramitochondrial ATP/ADP ratio. It is postulated that the close intercounnection between the mitochondrial hexokinase and the mitochondrial ATP forming system in reticulocytes is of funcitonal significance for mitochondrial-cytosolic interactions in rabbit reticulocytes and probably in other types of cells with mitochondrial hexokinases, too.  相似文献   

12.
The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2–0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed that the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate induces hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate that a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage in an oxidatively stressed erythrocyte system. In fact, exposure of intact erythrocytes incubated with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents. Bioelectromagnetics 18:125–131, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
To clarify the cause of the predilection of Babesia gibsoni for reticulocytes and canine HK erythrocytes (containing high concentrations of potassium) with inherited high concentrations of some amino acids, including glutamate, 4 enzymes in B. gibsoni parasites were examined by polyacrylamide gel electrophoresis (PAGE). The enzymes, i.e., hexokinase, glucose phosphate isomerase, lactate dehydrogenase, and glutamate dehydrogenase (GDH), were found to be associated with B. gibsoni parasites. The parasite-specific enzymes were shown to have different mobility patterns in PAGE from those found in normal canine erythrocytes. GDH, which is able to oxidize glutamate to alpha-ketoglutarate, an intermediate in the citric acid cycle in mitochondria, was detected only in the parasites. Electron microscopy of the parasites revealed double-membraned organelles similar to mitochondria in their cytoplasm. The parasites in in vitro culture contained many more mitochondrialike organelles than those in the peripheral blood of infected dogs. In addition, the size of parasites cultured in vitro was significantly larger than that of parasites in the peripheral blood. Based on these results, it is suggested that B. gibsoni may use glucose as an energy source in its own glycolytic pathway. Moreover, the parasite may also be capable of oxidizing glutamate via GDH in the citric acid cycle, which may operate in the mitochondrialike organelles within the parasite. This may explain the predilection of B. gibsoni for canine reticulocytes and HK erythrocytes with a high concentration of glutamate.  相似文献   

14.
The activity and isozyme distribution of hexokinase were studied in bone marrow cells from normal and anemic rabbits seperated by density centrifugation or by unit-gravity sedimentation. The specific activity of the enzyme was found to be about 150-fold higher in the basophilic erythroblasts as compared with the mature circulating erythrocytes. Mos of the falls in hexokinase activity take place whent the cell completes its final division and matures from the polychromatic stage to the orthochromatic stage. Concomitant with this strong decrease in enzyme activity, qualitative as well as quantitative changes in the hexokinase isozymic pattern become apparent. While in the basophilic and polychromatic erythroblasts the only hexokinase isozyme present is hexokinase type I, the orthochromatic cells also contain hexokinase Ib. This last isozymic form, which increases further at the reticulocyte stage, is also present in the circulating reticulocytes but not in mature red blood cells.  相似文献   

15.
The isozyme distribution, kinetic properties and intracellular localization of hexokinase (ADP: D-hexose-6-phosphotransferase, EC 2.7.1.1) were studied in erythrocytes, blood platelets, lymphocytes and granulocytes. Soluble and particulate fractions were separated by a rapid density centrifugation method after controlled digitonin-induced cell lysis. In lymphocytes and platelets the major part of total activity was particle-bound (78 and 88%, respectively). In granulocytes and erythrocytes most of the hexokinase activity was found in the cytosol. All cell types, except granulocytes, contain mainly the type I isozyme. Platelets contain only type I hexokinase, while in lyphocytes a minor amount of type III is present in the soluble fraction (less than 10% of total activity). The major constituent of granulocytes is type III hexokinase (70–80% of total activity), the remaining 20–30% is type I hexokinase. Erythrocytes contain a multibanded type I hexokinase. The substrate affinities of the type I hexokinase do not differ significantly between the different cell types or between soluble, bound and solubilized fractions. Only soluble hexokinase from lymphocytes shows a slightly decreased Km apparent for glucose (P < 0.05).  相似文献   

16.
Casein phosphatase activity in the cytosol of erythrocytes, taken from 1-month-old rats, is associated with three chromatographically distinct peaks: E1, E2 and E3. The dominant molecular form was E3 phosphatase, molecular weight 180,000 dalton, which increased in the cytosol of erythrocytes as compared to the value found in the same compartments of reticulocytes. The enzyme had the pH optimum at 6.5 and seemed to be positively cooperative with respect to substrate and negatively cooperative with respect to pyrophosphate, the most potent inhibitor. E1 and E2 casein phosphatases seem to be remnant activities in erythrocytes as compared to the values found in the cytosol of reticulocytes.  相似文献   

17.
(1) The mitochondrial ATPase (EC 3.6.1.3) Ehrlich ascites cell mitochondria, was inhibited by D-glucose under physiological concentrations of ATP. The generation of ADP by the mitochondrial bound hexokinase, seems to be the reason for the D-glucose inhibitory effect. Reversal of the inhibitory effect of ADP on Ehrlich ascites cell mitochondria ATPase by an ATP-regenerating system was achieved. (2) Dissociation of mitochondrial bound hexokinase from the mitochondria eliminated the inhibitory effect of D-glucose. Rebinding of the hexokinase to the mitochondria regenerated the D-glucose inhibitory effect on Ehrlich ascites cell mitochondria ATPase. (3) Bioflavonoids such as quercetin inhibit the mitochondrial hexokinase activity, but do not change the mitochondrial ATPase activity of isolated Ehrlich ascites tumor cell mitochondria. (4) The inhibitory effect of bioflavonoids on mitochondrial bound hexokinase activity is shown to be dissociable from the ascites tumor cell mitochondria and seems to be associated with regulatory rather than catalitic sites of the enzyme.  相似文献   

18.
The degradation process of mitochondria in rabbit reticulocytes proceeds predominately directly in the cytosol rather than in secondary lysosomes as judged by electronmicroscopy. At least five cytosolic protein factors are present in reticulocytes, which could be related to the degradation of mitochondria: the two inhibitory proteins of the respiratory chain RF and RC and three enzymes which cause a lysis of mitochondria in vitro (lipoxygenase, proteinase, phospholipase A). The properties of these factors are the subject of this paper. A hypothetic scheme of the degradation of mitochondria in reticulocytes is proposed. The degradation of mitochondria in reticulocytes is viewed as a complex interplay of various cytosolic factors and the functional state of the mitochondrial membranes. The lipoxygenase damages the membranes and triggers the penetration of the respiratory inhibitors. In this manner, a catastrophic cycle is initiated which leads to the complete breakdown of the mitochondria.  相似文献   

19.
Radioactive iodine-labeled iron-saturated human transferrin was shown to enter the cytosol of rabbit reticulocytes but not erythrocytes, and to be combined therein with a small “carrier” material not identical to the membrane transferrin receptor.  相似文献   

20.
Rat reticulocytes contain an isoproterenol-sensitive adenylate cyclase activity which is lost with maturation to erythrocytes despite no change in the density of β-adrenergic receptors. To explore this observation, a cytosol factor, previously shown to be important in the expression of catecholamine-sensitive adenylate cyclase in the reticulocyte, was compared to a cytosol factor obtained in a similar manner from mature erythrocytes. The cytosol factor from reticulocytes augmented isoproterenol-responsive adenylate cyclase activity in reticulocyte and erythrocyte membranes half-maximally at 0.7 ± 0.1 (SEM) and 1.1 ± 0.3 μg/ml, respectively. These concentrations of reticulocyte-derived cytosol factor were significantly lower (P < 0.01) than those concentrations of the factor from erythrocytes necessary to augment isoproterenol-responsive adenylate cyclase activity in reticulocyte (9.7 ± 2.3) and erythrocyte (7.5 ± 1.0) membranes. Cytosol factor from reticulocytes also caused greater total isoproterenol responsiveness than that from erythrocytes both in reticulocyte (784 ± 107 vs 525 ± 65 pmol/mg protein) and in erythrocyte membranes (54 ± 6 vs 36 ± 3); P < 0.05. Neither reticulocyte nor erythrocyte cytosol factor affected the concentration at which isoproterenol half-maximally stimulated adenylate cyclase in either set of membranes. However, the cytosol factor from reticulocytes markedly decreased the binding affinity of isoproterenol for β receptors in reticulocytes from 0.8 ± 0.2 to 6.9 ± 1.4 μm; P < 0.001. This reticulocyte factor had no significant effect on the binding affinity of isoproterenol for erythrocyte membranes. Erythrocyte factor did not change the binding affinity for isoproterenol in either reticulocyte or erythrocyte membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号