首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Conformational characteristics and the adsorption behavior of endo-beta-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133 degrees C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature.  相似文献   

2.
Noinville S  Revault M  Baron MH 《Biopolymers》2002,67(4-5):323-326
FTIR with attenuated total reflectance spectroscopy was used to study in situ adsorption of enzymes at water-solid interfaces to better understand how conformational changes may monitor enzymatic activity. Because the adsorption process depends on hydrophobic and electrostatic interactions, conformational changes were studied as a function of the nature of the adsorbing substrates, which are hydrophobic or hydrophilic in character. The adsorption kinetics of two examples of serine enzymes, alpha-chymotrypsin (alpha-chym) and Humicola lanuginosa lipase (HLL), were studied. The secondary structure and solvation of the adsorbed enzymes were both compared to the dissolved enzymes. The positively charged alpha-chym was adsorbed on a negatively charged hydrophilic support with minor structural changes, but the negatively charged lipase had no affinity for a similar support. Both enzymes were strongly retained on the hydrophobic support. The secondary and tertiary structures of the alpha-chym adsorbed on the hydrophobic support were strongly altered, which correlates to the inhibition of enzymatic hydrolysis. The specific solvation obtained for the adsorbed HLL is consistent with the existence of the open conformer in relation to the enhanced enzymatic activity at the water-hydrophobic interface.  相似文献   

3.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

4.
Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF‐SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF‐SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Negatively charged ultrafine silica particles (average diameter 20 nm) were used as support materials for adsorption immobilization of porcine trypsin, horseradish peroxidase, and bovine catalase under various conditions, and the changes in the enzyme activities and the circular dichroism (CD) spectra of these enzymes upon adsorption were measured. Since the light scattering intensity of the ultrafine particles was very low, the activities and the CD spectra of the enzymes adsorbed on the particle surfaces could be measured. The enzymes adsorbed at pH around and above their isoelectric points (pI) showed high activities. On the other hand, the enzymes adsorbed at pHs below their pI had significantly diminished activities and showed large CD spectral changes upon adsorption. The extent of CD spectral changes in the enzymes upon adsorption correlated very closely with that of the activity reduction. Therefore, the conformational changes in enzymes upon adsorption are one of the important factors that reduce the activities of adsorbed enzymes. These results demonstrate that the ultrafine particles are not only a novel support for enzyme immobilization but also are helpful for the molecular understanding of the immobilized enzymes. Correspondence to: A. Kondo  相似文献   

6.
Immobilization of Candida antarctica B lipase was examined on gold surfaces modified with either methyl- or hydroxyl-terminated self-assembled alkylthiol monolayers (SAMs), representing hydrophobic and hydrophilic surfaces, respectively. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance. Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy. The extent of lipase adsorption was nearly identical on either surface (approximately 240 ng cm−2), but its specific activity was sixfold higher on the methyl-terminated SAM, showing no activity loss upon immobilization. A uniform, 5.5 nm high, highly packed monolayer of CALB formed on the methyl-terminated SAM, while the adsorbed protein was disordered on the hydroxyl-terminated SAM. Hydrophobic surfaces thus may specifically orient the lipase in a highly active state.  相似文献   

7.
The influence of protein stability on the adsorption and desorption behavior to surfaces with fundamentally different properties (negatively charged, positively charged, hydrophilic, and hydrophobic) was examined by surface plasmon resonance measurements. Three engineered variants of human carbonic anhydrase II were used that have unchanged surface properties but large differences in stability. The orientation and conformational state of the adsorbed protein could be elucidated by taking all of the following properties of the protein variants into account: stability, unfolding, adsorption, and desorption behavior. Regardless of the nature of the surface, there were correlation between (i) the protein stability and kinetics of adsorption, with an increased amplitude of the first kinetic phase of adsorption with increasing stability; (ii) the protein stability and the extent of maximally adsorbed protein to the actual surface, with an increased amount of adsorbed protein with increasing stability; (iii) the protein stability and the amount of protein desorbed upon washing with buffer, with an increased elutability of the adsorbed protein with increased stability. All of the above correlations could be explained by the rate of denaturation and the conformational state of the adsorbed protein. In conclusion, protein engineering for increased stability can be used as a strategy to decrease irreversible adsorption on surfaces at a liquid-solid interface.  相似文献   

8.

The objective of the present study was to investigate the adsorption of PRP-1, PRP-3 and statherin to solid surfaces in terms of dependence on concentration, the presence of electrolyte and surface wettability. Time resolved in situ ellipsometry was used to determine the adsorbed amounts and adsorption rates of pure PRP-1, PRP-3 and statherin onto pure (hydrophilic) and methylated (hydrophobized) silica surfaces. The initial film build-up was fast and plateaus were reached within 10 min at all concentrations for both types of surfaces and all proteins. The observed adsorption and calculated diffusion rates of PRP-1, PRP-3 and statherin, respectively, indicated that the initial adsorption was mass transport controlled at low concentrations. At hydrophobic surfaces, isotherm shapes and adsorbed amounts were similar for PRP-1 and PRP-3, while statherin adsorbed to a higher extent. At hydrophilic surfaces only PRP-1 adsorbed substantially, while for PRP-3 and statherin adsorbed amounts were low. The presence of Ca 2+ ions in the phosphate buffer solution increased the adsorption of statherin and PRP-3 on hydrophobic surfaces, while PRP-1 was unaffected. On hydrophilic surfaces, all three proteins adsorbed in higher amounts in NaCl, compared to CaCl 2 at similar ionic strength. It is concluded that acidic PRPs (PRP-1 and PRP-3) and statherin readily form films on a variety of materials and solution conditions, showing that their functions may be fulfilled under a wide range of conditions.  相似文献   

9.
The effect of various covalent chemical modifications on the transesterification activity and stability of adsorbed lipase B from Candida antarctica (CALB) was studied in 2-butanone and o-xylene. CALB species modified with either polyethylene glycol 2000 monomethyl ether (MPEG), polyethylene glycol 300 mono-octyl ether (OPEG) or n-octanol (OCT) were used in combination with a hydrophobic (Accurel) and a hydrophilic (Duolite) support. The thermostabilities of adsorbed CALB in both solvents, and that of free CALB in o-xylene were not influenced by the modifications. In contrast, the thermostability of free CALB in 2-butanone decreased 2.5-fold after MPEG modification and increased 1.5-fold after modification with OPEG and n-octanol, compared to that of native CALB. The activities of the native and modified CALB species were up to 9-fold higher after adsorption onto Accurel than those of the corresponding free enzymes. Adsorption of these enzyme species onto Duolite only resulted in a 2- to 3-fold increase in the activity of OPEG- and OCT-modified CALB. The modified CALB species adsorbed onto Accurel show similar or up to 2-fold lower activities than do native adsorbed CALB species, while 1.5- to 6-fold higher activities were found for modified CALB species adsorbed onto Duolite. We propose that hydrophobic modifiers induce conformational changes of CALB during adsorption on a hydrophobic support whereas all three modifiers protect CALB from structural alterations during adsorption onto a hydrophilic support. Received: 18 March 1999 / Received revision: 21 June 1999 / Accepted: 27 June 1999  相似文献   

10.
A new circular dichroism (CD) technique is presented which quantifies, in situ, the changes in protein and peptide secondary structure upon adsorption at the quartz/liquid interface. Far-UV CD spectra of adsorbed proteins were recorded from several quartz interfaces contained in a specially constructed cell. Adsorbed, oriented alpha-helical spectra were recorded from hydrophilic and hydrophobic quartz using the bee venom peptide, melittin, which can be induced into an alpha-helical, tetrameric conformation in solution. The hydrophobic quartz provides a model system for oil-in-water emulsions and cell membranes. Surface concentrations were determined by radio-counting and were dependent on the nature of the surface. The characterization of these spectra has been partly achieved using far-UV CD spectra obtained from melittin adsorbed onto hydrophilic colloidal silica particles, where orientation effects are eliminated. Analysis of these spectra reveals considerable denaturation of the helical structures upon adsorption. Surface concentrations from the silica were determined from adsorption isotherms. The surface orientation of adsorbed melittin was dependent on the state of aggregation and hence degree of helicity of the molecule. These results support a model for the mode of action of melittin in lysing membranes.  相似文献   

11.
The adsorption properties, amount and specific activity of lipase D from Rhizopus delemar were investigated by employing a gold substrate modified with seven kinds of thiol monolayer. Quartz crystal microbalance measurements revealed that the amount of the enzyme adsorbed to the hydrophobic monolayers (e.g. benzenethiol) was much higher than that to the hydrophilic monolayers (e.g. 3-mercaptopropanoic acid). In contrast, lipase D adsorbed to the hydrophilic, 2-amino-1-ethanethiol monolayer showed the highest specific activity, the value being 300-fold higher than for the same enzyme dissolved in an aqueous medium.  相似文献   

12.
The adsorption properties, amount and specific activity of lipase D from Rhizopus delemar were investigated by employing a gold substrate modified with seven kinds of thiol monolayer. Quartz crystal microbalance measurements revealed that the amount of the enzyme adsorbed to the hydrophobic monolayers (e.g. benzenethiol) was much higher than that to the hydrophilic monolayers (e.g. 3-mercaptopropanoic acid). In contrast, lipase D adsorbed to the hydrophilic, 2-amino-1-ethanethiol monolayer showed the highest specific activity, the value being 300-fold higher than for the same enzyme dissolved in an aqueous medium.  相似文献   

13.
The growth structure of DMPC lipid layers on hydrophobic and hydrophilic alkylsilane-based self-assembled monolayers adsorbed on silicon has been investigated by means of X-ray reflectometry and atomic force microscopy. Hydrophilic modification of hydrophobically terminated ODS-SAMs has been achieved by dose-controlled irradiation with DUV light. While island formation of small DMPC bilayer islands is observed on hydrophobic SAM surfaces, closed layers of DMPC monolayers are formed on hydrophilic SAM surfaces. Furthermore, DMPC adsorption on chemically micropatterned substrates with alternating hydrophobic/hydrophilic surface properties has been studied by imaging ellipsometry and photoemission microscopy. Indication for at least partial bridging of hydrophobic areas by an adsorbed DMPC monolayer has been found.  相似文献   

14.
Three biophysical techniques were employed to study the structure and thermal stability of a series of homologous bovine lens gamma-crystallins upon binding to three model surfaces. The surfaces in order of increasing hydrophobicity were silica, methyl silica, and diphenyl silica. Secondary structure was analyzed by deconvolution Fourier transform infrared spectroscopy, while tertiary structure alterations were probed by front surface fluorescence spectroscopy. The effect of surface binding on protein thermal stability was analyzed by fluorescence and differential scanning calorimetry. The comparison of free and surface-bound protein with variations in the electrostatic and hydrophobic character of both the protein and the adsorbent surface with these techniques demonstrated that: (i) destabilization on hydrophobic surfaces is greater than on a more hydrophilic interface, (ii) detectable conformational changes tend to increase as the hydrophobicity of the surface increases, and (iii) subtle structural differences among proteins can play an important role in determining differences in protein stability and structure upon surface adsorption.  相似文献   

15.
J F Halsall  M Kalaji  A L Neal 《Biofouling》2013,29(2-4):105-118

Analysis of the adsorption of capsular exopolymers (EPS) from Pseudomonas sp. NCIMB 2021 to hydrophilic and hydrophobic gold surfaces was examined, in situ, using Fourier transform infrared spectroscopy. The molecular sequence of events occurring upon EPS adsorption to hydrophilic and hydrophobic surfaces has been elucidated using dynamic 2D‐FTIR correlation spectroscopy. This method of analysis enables the enhancement of the resolution of overlapping spectral features and the elucidation of time‐dependent changes. The data reveal the existence of surface dependent adsorption mechanisms. At both surfaces, the aromatic tyrosyl side chains of the protein moiety displace water. This is followed by an adsorption step dominated by carboxylate groups. However, at the hydrophobic surface, the two steps are interrupted by the ingress of water back to the surface. Furthermore, the amount of neutral exopolymer present was greater at the hydrophilic surface than the hydrophobic surface.  相似文献   

16.

The influence of saliva concentration, saliva total protein content and the wetting characteristics of exposed solids on in vitro film formation was studied by the technique of in situ ellipsometry. The rates and plateau values of adsorption (45 min) at solid/liquid interfaces (hydrophilic silica and hydrophobic methylated silica surfaces) were determinated for human parotid (HPS) and submandibular/sublingual (HSMSLS) resting saliva solutions (0.1 and 1.0%, (v/v), saliva in phosphate buffered saline). Adsorption rates were related to a model assuming mass transport through an unstirred layer adjacent to the surface. The results showed that the adsorption was rapid, concentration dependent and higher on hydrophobic than on hydrophilic surfaces. Analysis of the influence of protein concentration on the adsorbed amounts demonstrated an interaction between protein concentration and the two surfaces for HPS and HSMSLS, respectively. This may indicate differences in binding mode. Inter‐individual differences were found not to be significant at the 1% level of probability. Comparison of the observed adsorption and calculated diffusion rates suggest that on hydrophilic surfaces initial adsorption of proteins diffusing at rates corresponding to those of statherin and aPRPs takes place, whereas on hydrophobic surfaces lower molecular mass compounds appear to be involved.  相似文献   

17.
Adsorption and structural changes that occur upon interaction between methemoglobin (MetHb) and 5-methyl-aminomethyl-uridine forming enzyme (MnmE) with the surface of a bioactive glass (BG) were investigated by Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The effect of glutaraldehyde (GA) as a coupling agent for protein adsorption on BG was also investigated. The comparative analysis of FTIR spectra recorded from lyophilized proteins and from bioactive glass surface after protein adsorption was considered in order to obtain information about the changes in the secondary structure of the proteins. XPS data were used to determine the surface coverage. The unfolding of adsorbed proteins due to interactions between the internal hydrophobic protein domains and the hydrophobic BG surface was evidenced. After adsorption, the amount of α-helix decreases and less ordered structures (turns, random coils and aggregates) are preponderant. These changes are less pronounced on the BG functionalized with GA, suggesting that the treatment with GA preserves significantly larger amounts of α-helices in the structure of both proteins after adsorption.  相似文献   

18.
The structure of the adsorbing layers of native and denatured proteins (fibrinogen, gamma-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO(2) and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO(2) surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.  相似文献   

19.
Lipoxygenase binds to Teflon or epoxy coated surfaces, presumably through a hydrophobic interaction. The kinetics of bound enzyme differ from the kinetics of free enzyme both in the effect of substrate concentration on velocity and in the dependence of the induction time on substrate concentration. The binding site for the product hydroperoxide appears to be masked when the enzyme is bound to hydrophobic surfaces. In vivo kinetic behavior of the enzyme may be more closely approximated by that of adsorbed enzyme than by free enzyme.  相似文献   

20.
The ability of Tween 20 to reduce the adsorption of albumin on silicon surfaces of different hydrophobicity was investigated by ellipsometry. As expected, protein adsorption was found to depend on the degree of hydrophobicity of the surfaces and on the concentration of the surfactant. A reduction of 90% in albumin adsorption on hydrophobic methylated surfaces by 0.05% Tween 20 was achieved, whereas a reduction of only 15% on hydrophilic surfaces was observed. Experiments of time-dependent protein adsorption in both pure protein and protein-surfactant mixtures were conducted to ascertain the stability of physically adsorbed Tween 20 films on intermediate silicon surfaces. It was found that the adsorbed Tween 20 film was robust and there was no evidence of exchange of the Tween molecules with albumin for up to 240 min exposure. Adsorption minima were confirmed to correlate with minima in contact angle and critical micelle concentration (CMC). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 618-625, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号