首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two isolates of Fusarium moniliforme were compared with respect to production of a mutagenic compound, fusarin C, on seven corn varieties as well as on soybean, wheat, rye, barley, and a liquid culture medium. The isolates were originally obtained from corn and barley. Both isolates produced fusarin C on seed of all five crops within a 21-day period, and one isolate produced the largest amount on oats. Soybean was the poorest substrate for both isolates. Although the quantity of fusarin C produced on grain was isolate dependent, specific substrate requirements for each strain were suggested. The isolates differed in their ability to grow and produce fusarin C on corn with different moisture contents (16, 20, 24, and 28%). One isolate was more xerotolerant and grew at 16% moisture but did not produce the mutagen.  相似文献   

2.
A liquid culture medium was developed to screen North American isolates of Fusarium moniliforme Sheldon and Fusarium subglutinans (Wollenw. and Reink.) Nelson, Toussoun, and Marasas for their ability to produce fusarin C. Parameters which were important for the optimal biosynthesis of fusarin C included pH (3.0 to 4.0), aeration, and sugar concentration (30 to 40%). Of seven sugars tested, sucrose and glucose were the best carbohydrate sources for mycotoxin production, resulting in levels of fusarin C of greater than 60 ppm (greater than 60 micrograms/g) in liquid culture (28 degrees C; 7 days). A time-course study of fusarin C production was done over a 21-day period, during which time pH values, glucose concentrations, nitrogen levels, and fungal biomass were determined. Of the two Fusarium spp. studied, 13 of 16 isolates of F. moniliforme produced fusarin C in liquid medium (14 of 16 in corn), while none of the 15 isolates of F. subglutinans studied was found to produce the compound. Levels of fusarin C produced by Fusarium sp. isolates growing on corn ranged from 18.7 to 332.0 micrograms/g.  相似文献   

3.
A liquid culture medium was developed to screen North American isolates of Fusarium moniliforme Sheldon and Fusarium subglutinans (Wollenw. and Reink.) Nelson, Toussoun, and Marasas for their ability to produce fusarin C. Parameters which were important for the optimal biosynthesis of fusarin C included pH (3.0 to 4.0), aeration, and sugar concentration (30 to 40%). Of seven sugars tested, sucrose and glucose were the best carbohydrate sources for mycotoxin production, resulting in levels of fusarin C of greater than 60 ppm (greater than 60 micrograms/g) in liquid culture (28 degrees C; 7 days). A time-course study of fusarin C production was done over a 21-day period, during which time pH values, glucose concentrations, nitrogen levels, and fungal biomass were determined. Of the two Fusarium spp. studied, 13 of 16 isolates of F. moniliforme produced fusarin C in liquid medium (14 of 16 in corn), while none of the 15 isolates of F. subglutinans studied was found to produce the compound. Levels of fusarin C produced by Fusarium sp. isolates growing on corn ranged from 18.7 to 332.0 micrograms/g.  相似文献   

4.
Eighteen Fusarium crookwellense isolates from the continents of Australia, Europe, and North America were compared for their ability to produce mycotoxins on corn at 25 °C after 2 weeks. Extracts from corn fermented with each Fusarium isolate were analyzed by thin-layer chromatography (TLC) and gas chromatography/mass spectroscopy (GS/MS) for mycotoxins. Toxins detected were zearalenone (13 isolates), fusarin C (11 isolates), nivalenol (4 isolates), and diacetoxyscirpenol (2 isolates). Zearalenone and fusarin C were produced by isolates from each continent, while nivalenol was detected in the Fusarium isolates originating from Australia and one isolate from the United States.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned  相似文献   

5.
Three isolates of Fusarium graminearum (DAOM 180377, 180378, and 180379) were screened for their ability to produce mycotoxins on the solid substrates corn and rice. They all produced deoxynivalenol and zearalenone on corn. On rice, only DAOM 180378 and 180379 produced significant amounts of these mycotoxins, with levels of deoxynivalenol being much higher than those of zearalenone. The effects of the initial moisture content before autoclaving, incubation temperature, and time were studied with isolate DAOM 180378. At 19.5 degrees C the main product was zearalenone, whereas at 25 degrees C both deoxynivalenol and zearalenone were formed. Higher incubation temperatures (28 degrees C) favored deoxynivalenol formation, the maximum amount being 515 ppm (515 micrograms/g) formed after 24 days at an initial moisture content of 40%. The maximum level of zearalenone produced at the same temperature was 399 ppm, but at an initial moisture content of 35%. Other factors, such as pH, oxygen and carbon dioxide concentrations, and size of the culture flask also appeared to affect the production of mycotoxins.  相似文献   

6.
Production of moniliformin by Canadian isolates of Fusarium   总被引:1,自引:0,他引:1  
Twenty-eight Canadian isolates of Fusarium were tested for their ability to produce moniliformin in corn. Both F. moniliforme (2/6 isolates) and F. subglutinans (11/15 isolates) produced the mycotoxin, while F. graminearum did not. Field-corn inoculated with F. moniliforme M3783 was able to support production of both moniliformin and fusarin C.  相似文献   

7.
Seo JA  Kim JC  Lee DH  Lee YW 《Mycopathologia》1996,134(1):31-37
A total of 214 Fusarium graminearum isolates were obtained from corn and barley which were collected from Kangwon province and the southern part of Korea, respectively, and were tested for 8-ketotrichothecenes and zearalenone (ZEA) production on rice grains. The incidences of trichothecene production by 105 isolates of F. graminearum from corn were 59.0% for deoxynivalenol (DON), 37.1% for 15-acetyldeoxynivalenol(15-ADON), 13.3% for 3-acetyldeoxynivalenol (3-ADON), 7.6% for 3,15-diacetyldeoxynivalenol (3,15-DADON), 20.0% for nivalenol (NIV), 6.7% for 4-acetylnivalenol (4-ANIV), and 1.0% for 4,15-diacetylnivalenol (4,15-DANIV). DON chemotypes frequently produced 15-ADON as the major isomer rather than 3-ADON and 9 of the 61 DON chemotypes produced low levels of NIV. On the other hand, the incidences of trichothecene production of 109 isolates by F. graminearum from barley were 24.8% for DON, 72.5% for NIV, 62.4% for 4-ANIV, and 10.1% for 4,15-DANIV. Of these isolates, 78 were NIV chemotypes and only one isolate produced DON and 3-ADON as major toxins. In addition, 26 of the 78 NIV chemotypes produced low levels of DON. ZEA was frequently produced by the trichothecene-producing isolates and the incidences of ZEA were 51.4% and 31.2% for the isolates from corn and barley, respectively. There was a great regional difference in trichothecene production by F. graminearum isolates between corn- and barley-producing areas in Korea.  相似文献   

8.
A total of 137Fusarium isolates were screened forin vitro production of the mutagenic metabolite fusarin C, using a simple thin layer chromatographic method. It has been proven thatFusarium species (F. culmorum, F. graminearum, F. crookwellense, F. sporotrichioides, F. poae, F. tricinctum, andF. Avenaceum) isolated from European agricultural crops and soils are able to produce fusarin C. No fusarin C production was detected among isolates ofF. arthrosporioides, F. acuminatum, or F. equiseti. Results obtained by High-Performance Liquid Chromatography (HPLC) analyses of fungal extracts show that up to 26 chromatographic peaks having UV spectra similar to that of fusarin C are produced. It is not known if any of these metabolites are as mutagenic as fusarin C.  相似文献   

9.
Five toxigenic isolates of Fusarium species were tested for the production of zearalenone, moniliformin and trichothecenes (deoxynivalenol, 15-acetyldeoxynivalenol, T-2, HT-2 and neosolaniol) when grown on solid sugar beet slices in the laboratory for thirty days. The isolates were also grown on a solid rice medium for comparison. High zearalenone and trichothecene-producing isolates originally obtained from corn and corn-based feedstuff were compared with isolates obtained from sugar beets. One moniliformin-producing isolate from wheat was included in the study. With the exception of moniliformin, all toxins were produced on both substrates; however, the rice medium yielded the greater concentrations except for HT-2 which was produced on sugar beets in equal or greater concentrations. Zearalenone production on rice reached 729–1943 gmg/g whereas on sugar beet it reached 72–193 gmg/g. The moniliformin-producing isolate grew well on both substrates; however, moniliformin was produced only on the rice substrate. This study demonstrates for the first time that Fusarium species can produce both zearalenone and the trichothecenes on a sugar beet substrate.  相似文献   

10.
Fusarium fungi have been shown to infect corn and other crops worldwide, and have a significant impact on human health through loss of crops or contamination of food with mycotoxins. Isolates of Fusarium fungi from an area of South Africa with high incidence of esophageal cancer have been shown to induce esophageal and liver cancer in rats. Several isolates of Fusarium fungi were grown on corn to determine if genotoxic products were produced. We report the incubation of methanol extracts of Fusarium verticillioides cultures with DNA in the presence of rat liver fractions (S9) resulted in the formation of a unique DNA adduct that was detected by (32)P-postlabeling. Fusarin C was purified from cultures of Fusarium verticillioides RRC 415, and was not responsible for the formation of the DNA adduct. Treatment of the methanolic extracts with ultraviolet B radiation reduced the fusarin C content in the extract; however, this had no effect on the formation of the DNA adduct following incubation of the extract with DNA and S9. The unique DNA adduct was formed following the incubation of several Fusarium verticillioides isolates from the US and South Africa, while extracts of cultures of Fusarium graminearium and Fusarium sacchari isolates formed very little of the DNA adduct when incubated with DNA and S9. These data suggest that neither fusarin C nor any of its metabolites are responsible for formation of the DNA adduct, and that an unidentified compound is present in F. verticillioides cultures that forms a DNA adduct, and may be important in the etiology of human esophageal cancer.  相似文献   

11.
34Fusarium graminearum Schw isolates produced 4-deoxynivalenol to form significant amounts of 4, 7 — dideoxynivalenol and lesser amounts of 4 — deoxynivalenol monoacetates on grain substratesin vitro. This is the first report on the capability a large group of naturally occurring isolates to produce 4,7-dideoxynivalenol. The average levels of 4,7-dideoxynivalenol on rice, corn, barley, and wheat as a substrate were respectively 26.8, 14.0, 12.8, and 10.5% of the level of 4-deoxynivalenol. 4, 7 — dideoxynivalenol was present in all examined naturally contaminated wheat kernel samples at levels of 1.7 to 7.9% of the level of 4-deoxynivalenol. These findings suggest that more attention should be given to the occurrence of 4,7-dideoxynivalenol in cereals.  相似文献   

12.
To carry out the physiological characterization of Fusarium graminearum and F. culmorum isolates with regard to its zearalenone producing ability, an in-depth experiment with a full factorial design was conducted. The effects and mutual interactions of temperature, moisture, substrate and isolate on the production of the toxin were studied. The study was done with twelve isolates of Fusarium (7 of F. graminearum and 5 of F. culmorum). The analysis of variance shows that there is a complex interaction of all of these factors, which can influence the relative concentrations of the mycotoxin produced, and hence, the correct physiological characterization of the strain. All the tested cultures were susceptible to invasion by Fusarium. The moisture content of grains (water activity values 0.960, 0.970 and 0.980) did not constitute a limiting factor for fungal growth or ZEA production, but incubation temperature (15 degrees C, 20 degrees C, 28 degrees C, and 32 degrees C) affected the rate of zearalenone synthesis. Very low or undetectable ZEA production was observed at 32 degrees C. All tested isolates showed a characteristic behavior concerning the optimum temperature for ZEA production, which was usually 20 degrees C maintained during the whole incubation period. This finding, which does not agree with other reports obtained with strains from different origins, suggests that there are genetic differences that would explain the particular physiological behavior of each isolate related to the optimal production conditions for ZEA. The existence of significant differences regarding the susceptibility of the assayed cereal grains (wheat, corn and rice) used for ZEA production by the different Fusarium species (F. graminearum and F. culmorum) is described for the first time in this paper.  相似文献   

13.
Seventy different actinomycete isolates were evaluated for their ability to produce keratinase using a keratin-salt agar medium containing ball-milled feather as substrate. A novel feather-degrading isolate obtained from marine sediment produced the highest keratinolytic activity when cultured on broth containing whole feather as a primary source of carbon, nitrogen and energy. Based on phenotypic characterization and analysis of 16S rDNA sequencing the isolate was identified as a Streptomyces sp. MS-2. Maximum keratinase activity (11.2 U/mg protein) was achieved when cells were grown on mineral salt liquid medium containing 1% whole chicken feather adjusted to pH 8 and incubated at 35°C for 72 h at 150 rpm. Reduction of disulphide bridges was also detected, increasing with incubation time. Feather degradation led to an increase in free amino acids such as alanine, leucine, valine and isoleucine. Moreover, methionine and phenylalanine were also produced as microbial metabolites.  相似文献   

14.
Abstract Three genetically marked, single–spore isolates of Septoria nodorum from wheat were passed through detached leaves of wheat cvs Blueboy and Coker 747 and the barley cv. Boone to produce three sub–isolates per original isolate. Each sub–isolate was cultured for three pycnidiospore generations on its respective host. Virulence of each sub–isolate on detached leaves of Blueboy, Caldwell, Coker 747, and NK81W701 wheat, and Boone and Surry barley was compared with that of the original single–spore isolate from which it was derived. In most cases, sub–isolates passed through wheat were significantly more virulent than the originals on wheat cultivars. They also were more virulent to barley than the original isolates but they were less virulent to barley than to wheat cultivars. Isolate × cultivar interactions were statistically significant (P < .0001) for isolates passed through wheat or barley and were greater than isolate × cultivar interactions among the original isolates. In seven of eight isolates passed through wheat or barley, only the original genetic marker was recovered after three generations, indicating that cross–contamination could not account for the observed change of virulence. In the single case of apparent contamination, of a sub–isolate, virulence declined.  相似文献   

15.
The ochratoxin A and B (OTA, OTB) production by a toxigenic isolate ofPenicillium verrucosum grown on brewing barley up to six weeks was studied at a storage temperature of 25 °C and different moisture and water activity conditions. Sorption isothermes for barley were prepared at temperatures of 10°C, 15°C and 25°C. OTA was produced after 2 weeks of storage at moisture contents of ≥19%, which is equivalent to water activities (aw) of 0.83 (adsorptive) and 0.82 (desorptive) at 25 °C. Increased OTA concentrations (5.8-fold and 16.1-fold) were noticed when the moisture contents were adjusted to 20% (aw [ads] 25 °C=0.86) and 21% (aw [ads] [ 25 °C=0.88), respectively. An increase was also shown during storage of 4 and 6 weeks (1.2-fold and 2.4-fold, respectively). Production of OTB was shown to occur at moisture contents ≥18% (aw [ads] 25 °C=0.81). The findings document that OTA and OTB are not produced byP. verrucosum grown on barley stored below 18% moisture content.  相似文献   

16.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

17.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

18.
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system.  相似文献   

19.
C W Bacon 《Applied microbiology》1988,54(11):2615-2618
A procedure was developed to isolate and determine ergot alkaloid production by Acremonium coenophialum, the endophytic fungus of tall fescue. The procedure established that macerated leaf sheath or pith from inflorescence stem placed either in a liquid medium or on a corn meal-malt extract agar medium produced isolated mycelium and characteristic conidia within a 3- to 3.5-week period. Once isolated, each fungus was placed in another liquid medium, M104T, where competent strains produced total ergot alkaloids ranging from 38 to 797 mg/liter. Several isolates were negative for ergot alkaloid synthesis. The production of ergot alkaloids by individual isolates was unstable; isolates rapidly degenerated in their ability to produce ergot alkaloids during subculture. However, the procedure as presented allows the assessment of an isolate for ergot alkaloid synthesis during its initial isolation.  相似文献   

20.
A procedure was developed to isolate and determine ergot alkaloid production by Acremonium coenophialum, the endophytic fungus of tall fescue. The procedure established that macerated leaf sheath or pith from inflorescence stem placed either in a liquid medium or on a corn meal-malt extract agar medium produced isolated mycelium and characteristic conidia within a 3- to 3.5-week period. Once isolated, each fungus was placed in another liquid medium, M104T, where competent strains produced total ergot alkaloids ranging from 38 to 797 mg/liter. Several isolates were negative for ergot alkaloid synthesis. The production of ergot alkaloids by individual isolates was unstable; isolates rapidly degenerated in their ability to produce ergot alkaloids during subculture. However, the procedure as presented allows the assessment of an isolate for ergot alkaloid synthesis during its initial isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号