首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of arginine in the active center of D-amino-acid oxidase is well documented although its role has been differently interpreted as being part of the substrate-binding site or the positively charged residue near the N1-C2 = O locus of the flavin coenzyme. To have a better insight into the role of the guanidinium group in D-amino-acid oxidase we have carried out inactivation studies using phenylglyoxal as an arginine-directed reagent. Loss of catalytic activity followed pseudo-first-order kinetics for the apoprotein whereas the holoenzyme showed a biphasic inactivation pattern. Benzoate had no effect on holoenzyme inactivation by phenylglyoxal and the coenzyme analog 8-mercapto-FAD did not provide any additional protection in comparison to the native coenzyme. Spectroscopic experiments indicated that the modified protein is unable to undergo catalysis owing to the loss of coenzyme-binding ability. Analyses of time-dependent activity loss versus arginine modification or [14C]phenylglyoxal incorporation showed the presence of one arginine essential for catalysis. The protection exerted by the coenzyme is consistent with the involvement of an active-site arginine in the correct binding of FAD to the protein moiety. Comparative analyses of CNBr fragments obtained from apoenzyme, holoenzyme and the 8-mercapto derivative of D-amino-acid oxidase after reaction with phenylglyoxal did not provide unequivocal identification of the essential arginine residue within the primary structure of the enzyme. However, they suggest that it might be localized in the N-terminal portion of the polypeptide chain and point to a role of phenylglyoxal-modifiable arginine in binding to the adenylate/pyrophosphate moiety of the flavin coenzyme.  相似文献   

2.
The apoenzyme of diol dehydrase was inactivated by two arginine-specific reagents, 2,3-butanedione and phenylglyoxal, in borate buffer. In both cases, the inactivation followed pseudo-first-order kinetics. Kinetic data show that the incorporation of a single reagent molecule per active site of the enzyme is necessary for the complete inactivation. The modification with 2,3-butanedione was reversed by dilution of the reagent and borate concentrations (65% activity recovered). 1,2-Propanediol (substrate) partially protected the enzyme against inactivation. The holoenzyme was almost insensitive to 2,3-butanedione and phenylglyoxal, indicating that the essential arginine residue is prevented from the attack of these reagents either by direct blockage with the bound coenzyme or by an indirect conformational change caused by coenzyme binding. The inactivation of diol dehydrase by 2,3-butanedione did not result in dissociation of the enzyme into subunits. From these results, we concluded that the essential arginine residue is located at or in close proximity to the active site of diol dehydrase.  相似文献   

3.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

4.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

5.
The apoenzyme of diol dehydrase was inactivated by four sulfhydryl-modifying reagents, p-chloromercuribenzoate, 5,5′-dithiobis(2-nitrobenzoate) (DTNB), iodoacetamide, and N-ethylmaleimide. In each case pseudo-first-order kinetics was observed. p-Chloromercuribenzoate modified two sulfhydryl groups per enzyme molecule and modification of the first one resulted in complete inactivation of the enzyme. DTNB also modified two sulfhydryl groups, but modification of the second one essentially corresponded to the inactivation. In both cases, the inactivation was reversed by incubation with dithiothreitol. Cyanocobalamin, a potent competitive inhibitor of adenosylcobalamin, protected the essential residue, but not the nonessential one, against the modification by these reagents. By resolving the sulfhydryl-modified cyanocobalamin-enzyme complex, the enzyme activity was recovered, irrespective of treatment with dithiothreitol. From these results, we can conclude that diol dehydrase has two reactive sulfhydryl groups, one of which is essential for catalytic activity and located at or in close proximity to the coenzyme binding site. The other is nonessential for activity. Neitherp-chloromercuribenzoate- nor DTNB-modified apoenzyme was able to bind cyanocobalamin, whereas the iodoacetamide- and N-ethylmaleimide-modified apoenzyme only partially lost the ability to bind cyanocobalamin. The inactivation of diol dehydrase by p-chloromercuribenzoate and DTNB did not bring about dissociation of the enzyme into subunits. Total number of the sulfhydryl groups of this enzyme was 14 when determined in the presence of 6 m guanidine hydrochloride. No disulfide bond was detected.  相似文献   

6.
Alkaline phosphatases (ALP, EC 3.1.3.1) are ubiquitous enzymes found in most species. ALP from a pearl oyster, Pinctada fucata (PALP), is presumably involved in nacreous biomineralization processes. Here, chemical modification was used to investigate the involvement of basic residues in the catalytic activity of PALP. The Tsou's plot analysis indicated that the inactivation of PALP by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and phenylglyoxal (PG) is dependent upon modification of one essential lysine and one essential arginine residue, respectively. Substrate reaction course analysis showed that the TNBS and PG inactivation of PALP followed pseudo-first-order kinetics and the second-order inactivation constants for the enzyme with or without substrate binding were determined. It was found that binding substrate slowed the PG inactivation whereas had little effect on TNBS inactivation. Protection experiments showed that substrates and competitive inhibitors provided significant protection against PG inactivation, and the modified enzyme lost its ability to bind the specific affinity column. However, the TNBS-induced inactivation could not be prevented in presence of substrates or competitive inhibitors, and the modified enzyme retained the ability to bind the affinity column. In a conclusion, an arginine residue involved in substrate binding and a lysine residue involved in catalysis were present at the active site of PALP. This study will facilitate to illustrate the role ALP plays in pearl formation and the mechanism involved.  相似文献   

7.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
K Konishi  M Fujioka 《Biochemistry》1987,26(25):8496-8502
Rat liver glycine methyltransferase is inactivated irreversibly by phenylglyoxal in potassium phosphate buffer. The inactivation obeys pseudo-first-order kinetics, and the apparent first-order rate constant for inactivation is linearly related to the reagent concentration. A second-order rate constant of 10.54 +/- 0.44 M-1 min-1 is obtained at pH 8.2 and 25 degrees C. Amino acid analysis shows that only arginine is modified upon treatment with phenylglyoxal. Sodium acetate, a competitive inhibitor with respect to glycine, affords complete protection in the presence of S-adenosylmethionine. Acetate alone has no effect on the rate of inactivation. The value of the dissociation constant for acetate determined from the protection experiment is in good agreement with that obtained by kinetic analysis. Comparison of the amount of [14C]phenylglyoxal incorporated into the protein and the number of arginine residues modified in the presence and absence of protecting ligands indicates that modification of one arginine residue per enzyme subunit eliminates the enzyme activity, and this residue is identified as Arg-175 by peptide analysis. The arginine-modified glycine methyltransferase appears to bind S-adenosylmethionine as the native enzyme does, as seen from quenching of the protein fluorescence by S-adenosylmethionine. These results suggest the requirement of Arg-175 in binding the carboxyl group of the substrate glycine.  相似文献   

9.
Rat liver S-adenosylhomocysteinase (EC 3.3.1.1) is inactivated by phenylglyoxal following pseudo-first order kinetics. The dependence of the apparent first order rate constant for inactivation on the phenylglyoxal concentration shows that the inactivation is second order in reagent. This fact together with the reversibility of inactivation upon removal of excess reagent and the lack of reaction at residues other than arginine as revealed by amino acid analysis and incorporation of phenylglyoxal into the protein indicate that the inactivation is due to the modification of arginine residue. The substrate adenosine largely but not completely protects the enzyme against inactivation. Although the modification of two arginine residues/subunit is required for complete inactivation, the relationship between loss of enzyme activity and the number of arginine residues modified, and the comparison of the numbers of phenylglyoxal incorporated into the enzyme in the presence and absence of adenosine indicate that one residue which reacts very rapidly with the reagent compared with the other is critical for activity. Although the phenylglyoxal treatment does not result in alteration of the molecular size of the enzyme or dissociation of the bound NAD+, the intrinsic protein fluorescence is largely lost upon modification. The equilibrium binding study shows that the modified enzyme apparently fails to bind adenosine.  相似文献   

10.
In the previous paper we demonstrated that uridine-5'-beta-1-(5-sulfonic acid) naphthylamidate (UDPAmNS) is a stacked and quenched fluorophore that shows severalfold enhancement of fluorescence in a stretched conformation. UDPAmNS was found to be a powerful competitive inhibitor (Ki = 0.2 mM) for UDP-glucose-4-epimerase from Escherichia coli. This active site-directed fluorophore assumed a stretched conformation on the enzyme surface, as was evidenced by full enhancement of fluorescence in saturating enzyme concentration. Complete displacement of the fluorophore by UDP suggested it to bind to the substrate binding site of the active site. Analysis of inactivation kinetics in presence of alpha,beta-diones such as phenylglyoxal, cyclohaxanedione, and 2,3-butadione suggested involvement of the essential arginine residue in the overall catalytic process. From spectral analysis, loss of activity could also be directly correlated with modification of only one arginine residue. Protection experiments with UDP showed the arginine residue to be located in the uridyl phosphate binding subsite. Unlike the native enzyme, the modified enzyme failed to show any enhancement of fluorescence with UDPAmNS clearly demonstrating the role of the essential arginine residue in stretching and binding of the substrate. The potential usefulness of such stacked and quenched nucleotide fluorophores has been discussed.  相似文献   

11.
Treatment of chicken liver fatty acid synthetase with the arginine-specific reagent phenylglyoxal resulted in the pseudo-first-order loss of synthetase, beta-ketoacyl reductase and enoyl reductase activities. The sum of the second-order rate constants for the two reductase reactions equalled that for the synthetase reaction, suggesting that inactivation of either reductase was responsible for the loss of fatty acid synthetase activity. Double-log plots of pseudo-first-order rate constant versus reagent concentration yielded straight lines with slopes of unity for all three activities tested, suggesting the reaction of one reagent molecule in the inactivation process. In parallel experiments, complete inactivation of synthetase activity was accompanied by the incorporation of 4.5 [14C]phenylglyoxal, and the loss of 2.3 arginine residues per subunit. Reaction of essential sulfhydryl groups was not involved, since inactivation by phenylglyoxal was unaffected by reversible protection of these groups with 5,5'-dithiobis(2-nitrobenzoic acid). Inactivation of all three activities by phenylglyoxal was prevented by saturating amounts of the coenzyme NADPH, or its analogs 2',5'-ADP and 2'-AMP, but not by the corresponding nucleotides containing only the 5'-phosphate. Conversely, the ability of this enzyme to bind NADPH was abolished upon inactivation. These results are consistent with the presence of an essential arginine residue at the binding site for the 2'-phosphate group of NADPH at each of the two reductase domains of the multifunctional fatty acid synthetase subunit.  相似文献   

12.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

13.
1. The mechanism of proteolysis of ornithine transaminase apoenzyme II by group-specific protease and the relation between the confirmations of ornithine transaminase and its susceptibility to group-specific protease were studied to elucidate the mode of action of the protease. 2. Differences in the conformations of ornithine transaminase apoenzyme II, molecular weight 67000, and ornithine transaminase holoenzyme, molecular weight 140000, were shown by studies on difference spectra produced by various concentrations of ethylene glycol. Increase of the titratable sulfhydryl groups on resolution of the coenzyme from ornithine transaminase also supports this finding. These results are consistent with the facts that the apoenzyme was sensitive to group-specific protease, while the holoenzyme was not. 3. Kinetics studies showed that ornithine transaminase apoenzyme II was degraded by limited proteolysis. Reaction of the native enzyme with group-specific protease resulted in a nick in the enzyme molecule with formation of one homogeneous large product and small peptides. The large product was not degraded further. The large product was indistinguishable from native ornithine transaminase apoenzyme II in various properties including its elution volume on gel filtration, its mobility on disc electrophoresis, its antigenicity, its estimated number of exposed tryptophan residues, and its titratable number of sulfhydryl groups. But unlike the apoenzyme the product did not show tetramerization with coenzyme or catalytic activity, although it retained the ability to bind with coenzyme and had the same number of bound pyridoxal phosphate as the native ornithine transaminase molecule. Thus, native ornithine transaminase apoenzyme II was degraded by limited proteolysis. Unfolded enzyme, denatured by 8 M urea, was degraded extensively. 4. The initial step of intracellular proteins degradation is discussed on the basis of these results.  相似文献   

14.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

15.
1. The reactive analogue oADP produced by periodate oxidation of ADP has been studied as a potential affinity label for the enzyme bovine glutamate dehydrogenase, using circular dichroism (CD) difference spectroscopy to monitor specific binding. 2. The analogue binds stoichiometrically, rapidly and reversibly to the adenine nucleotide binding site with Kd approximately equal to 12 microM (20 degrees C, pH 7) with characteristic intensification of the adenine nucleotide CD at 260 nm. 3. This complex is unstable and decays with a half-life of about 1.5 h; the analogue then becomes attached as a Schiff base to a number of subsidiary sites, including the enzyme active site, with partial inactivation of the enzyme. 4. Depending upon initial concentration of oADP, the enzyme activity is progressively lost during the slow reaction; following borohydride reduction, up to four molecules of analogue are bound/subunit. 5. Protection against loss of enzyme activity is afforded by the coenzyme NAD+ plus glutarate or L-hydroxyglutarate (an effective inhibitor), or by glutarate alone, but not by NAD+ alone. 6. Spectroscopic and protection studies indicate that after the decay of the specific CD signal, the enzyme retains the capacity to bind ADP, but that this is progressively lost in parallel with decay of enzymic activity. 7. The results are consistent with proximity or functional interaction between the adenine nucleotide site and the coenzyme binding portion of the active site. 8. Thus oADP does not act as a true affinity label for the adenine nucleotide binding site, but the reaction subsequent to binding at that site shows some specificity directed towards the active site.  相似文献   

16.
Mitochondrial aspartate aminotransferase from beef kidney is 50% inhibited after 2 hr treatment with 2.5 mM tetranitromethane at pH 8. Two tyrosine residues per enzyme protomer (46,000 daltons) are modified by the reagent either in the holoenzyme or in the apoenzyme. In both cases the five SH groups titratable with p-mercuribenzoate are not modified by the reagent. However, with a tetranitromethane concentration higher than 2.5 mM and 10 mM mercaptoethanol, an additional tyrosine residue is nitrated in both holo- and apoenzymes. These results are not affected by the presence in the incubation mixture of the substrates alpha-ketoglutarate and glutamate both at ten times their Km values. Mercaptoethanol does not impair the recombination of native or nitrated apoenzyme with the coenzyme and does not reduce the coenzyme moiety of native or nitrated holoenzyme, but promotes a conformational change in the nitrated holoenzyme which causes inactivation. Hydrosulfite promotes the reduction of the coenzyme moiety of native and nitro holoenzyme resulting in their inactivation, largely in the nitrated form. The recombination of the coenzyme with native or nitrated apoenzyme is not influenced by hydrosulfite.  相似文献   

17.
Tryptophanase from Escherichia coli B/1t7-A is inactivated by the arginine-specific reagent, phenylglyoxal, in potassium phosphate buffer at pH 7.8 AND 25 degrees. Apo- and holoenzyme are inactivated at the same rate, and inactivation of both is correlated with modification of 2 arginine residues/tryptophanase monomer. Substrate analogs having a carboxyl group protect the holoenzyme against both inactivation and arginine modification but have no effect on the inactivation or modification of the apoenzyme. Phenylglyoxal-modified apotryptophanase retains the capacity to bind the coenzyme, pyridoxal-P, but the spectrum of this reconstituted species differs from that of native holotryptophanase. Neither this reconstituted species nor the phenyglyoxal-modified holoenzyme shows the 500 nm absorption characteristic of the native enzyme when substrates are added. These results demonstrate a requirement for specific arginine residues for substrate binding and are discussed in the context of the known conformational and spectal forms of tryptophanase with regard to a possible role for arginine residues in formation of a catalytically effective enzyme-pyridoxal-P complex.  相似文献   

18.
The apoenzyme of diol dehydrase was inactivated by photoirradiation in the presence of rose bengal or methylene blue, following pseudo-first-order kinetics. The inactivation rates were markedly reduced under a helium atmosphere, suggesting that the inactivation is due to photooxidation of the enzyme under air. The half-maximal rate of methylene blue-sensitized photoinactivation was observed at pH around 7.5. Amino acid analyses indicated that one to two histidine residues decreased upon the dye-sensitized photoinactivation, whereas the numbers of tyrosine, methionine, and lysine did not change. Ethoxyformic anhydride, another histidine-modifying reagent, also inactivated diol dehydrase, with pseudo-first-order kinetics and a half-maximal rate at pH 7.7. It was shown spectrophotometrically that three histidine residues per enzyme molecule were modified by this reagent with loss of enzyme activity. Two tyrosine residues per enzyme molecule were also modified rapidly, irrespective of the activity. The photooxidation or ethoxycarbonylation of the enzyme did not result in dissociation of the enzyme into subunits, but deprived the enzyme of ability to bind cyanocobalamin. The percentage loss of cobalamin-binding ability agreed well with the extent of inactivation. The enzyme-bound hydroxocobalamin showed only partial protecting effect against photoinactivation and resulting loss of the cobalamin-binding ability. These results provide evidence that diol dehydrase possesses essential histidine residues which are required for the coenzyme binding.  相似文献   

19.
We have previously shown that a coenzyme-B12 analog, adenosylcobalamin (AdoCbl)-(e-OH), with the e-propionamide group converted to a carboxylic acid, serves as a poor coenzyme for dioldehydrase. During the course of the catalytic process, the enzyme AdoCbl-(e-OH) complex becomes catalytically inactive (T. Toraya, E. Krodel, A. S. Mildvan, and R. H. Abeles, 1979, Biochemistry18, 417–426). We have now examined the mechanism of this inactivation further. Inactivation only occurs in the presence of substrate. The dioldehydrase coenzyme analog complex is stable in the absence of substrate. In the inactivated complex, the coenzyme analog was stoichiometrically converted to a cob(II)alamin species. The cob-(II)alamin formed remained irreversibly bound at the active site of the enzyme and resisted oxidation by O2 even in the presence of CN?. Stoichiometric formation of 5′-deoxyadenosine from the 5′-deoxy-5′-adenosyl moiety of the coenzyme analog was demonstrated with [8-14C]-AdoCbl(e-OH). This nucleoside also remained tightly bound to the enzyme and was not exchangeable with free 5′-deoxyadenosine nor was it removed by Sephadex chromatography. The rate of inactivation showed no deuterium isotope effect when the inactivation occurred in the presence of l,2-propanediol-l-d2. The inactivated complex was resolved by acid ammonium sulfate treatment into the intact apoenzyme and the hydroxocobalamin derivative. This indicates that the apoenzyme itself is not modified in the inactivation process. These results suggest that the inactivation reaction occurs from one of the intermediates in the normal catalysis. We propose that the inactivation is due to incorrect binding of the modified coenzyme in an intermediate of the catalytic process. This incorrect binding leads to the loss of the substrate radical, and consequently, to loss of catalytic activity.  相似文献   

20.
The substrate analogue 3-bromo-2-ketoglutarate reacts with pig heart NADP+-dependent isocitrate dehydrogenase to yield partially inactive enzyme. Following 65% inactivation, no further inactivation was observed. Concomitant with this inactivation, incorporation of 1 mol of reagent/mol of enzyme dimer was measured. The dependence of the inactivation rate on bromoketoglutarate concentration is consistent with reversible binding of reagent (KI = 360 microM) prior to irreversible reaction. Manganous isocitrate reduces the rate of inactivation by 80% but does not provide complete protection even at saturating concentrations. Complete protection is obtained with NADP+ or the NADP+-alpha-ketoglutarate adduct. By modification with [14C]bromoketoglutarate or by NaB3H4 reduction of modified enzyme, a single major radiolabeled tryptic peptide was obtained by high performance liquid chromatography with the sequence: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Evidence in the following paper (Bailey, J.M., Colman, R.F. (1987) J. Biol. Chem. 262, 12620-12626) indicates that X is glutamic acid. Enzyme modified at the coenzyme site by 2-(bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the presence of manganous isocitrate is not further inactivated by bromoketoglutarate. Bromoketoglutarate-modified enzyme exhibits a stoichiometry of binding isocitrate and NADPH equal to 1 mol/mol of enzyme dimer, half that of native enzyme. These results indicate that bromoketoglutarate modifies a residue in the nicotinamide region of the coenzyme site proximal to the substrate site and that reaction at one catalytic site of the enzyme dimer decreases the activity of the other site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号