首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of providing low oxygen tension in the gas phase of two different types of cell culture systems were investigated. The clonal growth of granulocyte-macrophage progenitor cells in an agar culture system was improved markedly by incubation within a low oxygen tension gas phase (48 mmHg – 6.8%) instead of the conventional air (135 mmHg – 19%), the effects being measured by increases in numbers of colony forming cells detected and in the colony sizes. The increased efficiency of colony formation was observed both with mouse and human marrow cells. A similar effect was observed in a liquid adherence culture system with primary cultures of foetal mouse fibroblasts both at clonal and higher cell densities.  相似文献   

2.
Introduction:  In vitro expansion and differentiation of mesenchymal stem cells (MSC) rely on specific environmental conditions, and investigations have demonstrated that one crucial factor is oxygen environment.
Objectives:  In order to understand the impact of oxygen tension on MSC culture and chondrogenic differentiation in vitro , we developed a mathematical model of these processes and applied it in predicting optimal assays.
Methods and results:  We compared ovine MSCs under physiologically low and atmospheric oxygen tension. Low oxygen tension improved their in vitro population growth as demonstrated by monoclonal expansion and colony forming assays. Moreover, it accelerated induction of the chondrogenic phenotype in subsequent three-dimensional differentiation cultures. We introduced a hybrid stochastic multiscale model of MSC organization in vitro . The model assumes that cell adaptation to non-physiological high oxygen tension reversibly changes the structure of MSC populations with respect to differentiation. In simulation series, we demonstrated that these changes profoundly affect chondrogenic potential of the populations. Our mathematical model provides a consistent explanation of our experimental findings.
Conclusions:  Our approach provides new insights into organization of MSC populations in vitro. The results suggest that MSC differentiation is largely reversible and that lineage plasticity is restricted to stem cells and early progenitors. The model predicts a significant impact of short-term low oxygen treatment on MSC differentiation and optimal chondrogenic differentiation at 10–11% pO2.  相似文献   

3.
The growth of primitive murine hematopoietic progenitors, high proliferative potential colony-forming cells (HPP-CFC), has been reported to be improved in low O2 tension cultures. In this report we investigated the growth of HPP-CFC stimulated by combinations of interleukin (IL)-1, IL-6, kit-ligand (KL), granulocyte (G) colony-stimulating factor (CSF), macrophage-CSF (M-CSF), granulocyte-macrophage-CSF (GM-CSF) and IL-3 in clonal cultures incubated at 7% or 21% O2 tension. Neither the numbers of HPP-CFC colonies nor the number of cells per HPP-CFC colony differed significantly between cultures grown under 7% or 21% O2 tension. The mean number of cells per HPP-CFC colony was found to range from 3.9 x 10(4) to 2.2 x 10(5). The smallest HPP-CFC colonies were stimulated by the cytokine combination IL-1 + IL-6 + KL, whereas the largest colonies were stimulated by a combination of all seven cytokines tested. The growth of erythroid colonies from murine or human bone marrow did, however, show some enhancement when cultured at a lower O2 tension. These results demonstrate that the growth of murine HPP-CFC was not compromised when cultured at ambient O2 concentration.  相似文献   

4.
This study was conducted to evaluate the effect of oxygen tension during IVM and/or IVC on developmental competence of porcine follicular oocytes. Prospective, randomized experiments were designed, and oocytes were matured, inseminated and cultured in vitro in the designated condition. In experiment 1, either high (20%) or low (7%) oxygen tension was used for IVM. The high oxygen significantly improved blastocyst formation (23% versus 13%; P<0.01) after IVF than the low oxygen. Such treatment, however, did not significantly (P>0.05) improve the rates of nuclear maturation (89% in each treatment), sperm penetration (62-72%), monospermic fertilization (56-67%), pronuclear formation (90-96%), cleavage (49-53%) and blastocyst cell number (31-32 cells). In experiment 2, the combined effect of oxygen tension during IVM and IVC of embryos was evaluated by a 2 x 2 factorial arrangement. Again, the high oxygen tension during IVM supported blastocyst formation more efficiently (P<0.01) than the low oxygen, and this was independent of oxygen tension during IVC (26-28% versus 15-16%). In oocytes matured under the high oxygen, a tendency to increase blastomere number (P=0.0630) was found, when the low oxygen was used for IVC after insemination (39-45 cells/blastocyst). In conclusion, the use of high oxygen tension (20% maintained by exposure to 5% CO2 in air) for IVM of porcine oocytes promoted blastocyst formation in vitro.  相似文献   

5.
Growth and development of the lung normally occur in the low oxygen environment of the fetus. The role of this low oxygen environment on fetal lung endothelial cell growth and function is unknown. We hypothesized that low oxygen tension during fetal life enhances pulmonary artery endothelial cell (PAEC) growth and function and that nitric oxide (NO) production modulates fetal PAEC responses to low oxygen tension. To test this hypothesis, we compared the effects of fetal (3%) and room air (RA) oxygen tension on fetal PAEC growth, proliferation, tube formation, and migration in the presence and absence of the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine (LNA), and an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). Compared with fetal PAEC grown in RA, 3% O(2) increased tube formation by over twofold (P < 0.01). LNA treatment reduced tube formation in 3% O(2) but had no affect on tube formation in RA. Treatment with SNAP increased tube formation during RA exposure to levels observed in 3% O(2). Exposure to 3% O(2) for 48 h attenuated cell number (by 56%), and treatment with LNA reduced PAEC growth by 44% in both RA and 3% O(2). We conclude that low oxygen tension enhances fetal PAEC tube formation and that NO is essential for normal PAEC growth, migration, and tube formation. Furthermore, we conclude that in fetal cells exposed to the relative hyperoxia of RA, 21% O(2), NO overcomes the inhibitory effects of the increased oxygen, allowing normal PAEC angiogenesis and branching. We speculate that NO production maintains intrauterine lung vascular growth and development during exposure to low O(2) in the normal fetus. We further speculate that NO is essential for pulmonary angiogenesis in fetal animal exposed to increased oxygen tension of RA and that impaired endothelial NO production may contribute to the abnormalities of angiogenesis see in infants with bronchopulmonary dysplasia.  相似文献   

6.
We investigated the effects of interferon gamma (IFN-gamma) on the growth of murine hematopoietic progenitors. IFN-gamma inhibited granulocyte colony-stimulating factor (G-CSF)- and interleukin-3 (IL-3)-dependent colony growth by granulocyte-macrophage (GM) progenitors derived from the bone marrow cells of normal mice. However, the number of IL-3-dependent GM colonies formed by the bone marrow cells of 5-fluorouracil (5-FU)-treated mice was not influenced by the addition of IFN-gamma. Replating experiments suggested that IFN-gamma suppressed GM colony growth directly and that it exerted an inhibitory effect on the proliferation, but not on the commitment, of GM progenitors. In contrast, IFN-gamma failed to suppress colony growth by mast cell progenitors. Erythroid and megakaryocytic progenitors exhibited different responses to IFN-gamma depending on mouse strains. These results suggest that potent negative regulators are not always inhibitors of hematopoietic progenitors.  相似文献   

7.
Oxygen requirements and mass transfer in hairy-root culture   总被引:1,自引:0,他引:1  
Oxygen mass transfer in clumps of Atropa belladonna hairy roots was investigated as a function of root density and external flow conditions. Convection was the dominant mechanism for mass transfer into root clumps 3.5 to 5.0 cm in diameter; Peclet numbers inside the clumps ranged from 1.4 x 10(3) to 7.1 x 10(4) for external superficial flow velocities between 0.4 and 1.4 cm s(-1). Local dissolved-oxygen levels and rates of oxygen uptake were measured in aflow chamber and in bubble column and stirred bioreactors. When air was used as oxygen source, intraclump dissolved-oxygen tensions ranged from90% to 100% air saturation at high external flow velocity andlow root density, to less than 20% air saturation in dense root clumps. Specific oxygen-uptake rate declined with increasing root density. When external boundary layers around individual roots were eliminated byforcing liquid through the clumps at superficial velocities between 0.2 and1.0 cm s(-1), internal dissolved-oxygen tension was maintained at 95% to 100% air saturation and rate of oxygen uptake at 1.6 x 10(-6) g g(-1) s(-1) dry weight. Liquid culture of single A. belladonna hairy roots was used to investigate the effect of dissolved-oxygen tensionon root growth and morphology. Total root length and number of root tips increased exponentially at oxygen tensions between 70% and 100%air saturation. Specific growth rate increased with oxygen tension up to 100% air saturation; this result demonstrates that hairy roots aeratedwithout oxygen supplementation are likely to be oxygenlimited. No growth occurred at 50% air saturation. Growth of hairy roots proceeded with an average length per tip of about 1 cm; this value was essentially independent of dissolved-oxygen tension between 70% and 100% air saturation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Articular cartilage is an avascular connective tissue that exhibits little intrinsic capacity for repair. Articular cartilage exists in a reduced oxygen ( approximately 5%) environment in vivo; therefore, oxygen tension may be an important factor that regulates the metabolism of chondrocyte progenitors. A number of recent studies have developed tissue engineering approaches for promoting cartilage repair using undifferentiated progenitor cells seeded on biomaterial scaffolds, but little is known about how oxygen might influence these engineered tissues. Human adipose-derived adult stem (hADAS) cells isolated from the stroma of subcutaneous fat were suspended in alginate beads and cultured in control or chondrogenic media in either low oxygen (5%) or atmospheric oxygen tension (20%) for up to 14 days. Under chondrogenic conditions, low oxygen tension significantly inhibited the proliferation of hADAS cells, but induced a two-fold increase in the rate of protein synthesis and a three-fold increase in total collagen synthesis. Low oxygen tension also increased glycosaminoglycan synthesis at certain timepoints. Immunohistochemical analysis showed significant production of cartilage-associated matrix molecules, including collagen type II and chondroitin-4-sulfate. These findings suggest oxygen tension may play an important role in regulating the proliferation and metabolism of hADAS cells as they undergo chondrogenesis, and the exogenous control of oxygen tension may provide a means of increasing the overall accumulation of matrix macromolecules in tissue-engineered cartilage.  相似文献   

9.
Rates of oxygen uptake, growth and alkaloid production by hairy roots in submerged culture were investigated using a recirculation reactor allowing operation at high liquid velocities for removal of hydrodynamic boundary layers. Measurements were performed at dissolved oxygen tensions of 31-450% air saturation. Critical oxygen concentrations for Atropa belladonna hairy roots were above air saturation, viz. 100-125% air saturation for oxygen uptake and 150% air saturation for growth, demonstrating that these roots cultivated in reactors with air sparging are oxygen-limited. The critical oxygen tension for oxygen uptake by Solanum aviculare hairy roots was 75% air saturation. Both the specific oxygen uptake rate and specific growth rate of A. belladonna hairy roots were dependent on the mass (g dry weight) of roots present; even in the absence of boundary layers, growth did not remain exponential over the entire culture period. Cryo-scanning electron microscopy showed that hairy roots grown submerged in liquid medium were covered with thick layers of hydrated mucilage and root hairs, representing a significant additional barrier to oxygen transfer. Roots protruding out of the liquid medium showed no evidence of mucilage accumulation. The specific oxygen demand of A. belladonna root tips was 3.3-11.5 times higher than for the remainder of the roots, the ratio increasing as the dissolved oxygen tension was reduced. Specific growth rates, biomass yields from sugar, and atropine levels were maximum at around 150% air saturation, but decreased significantly with oxygen concentrations above ca. 200%.  相似文献   

10.
The present study further analyzes the growth and reorganization of the vessels adjacent to capillaries in the hyperoxia-adapted lung in response to a lower ambient oxygen tension. The aim of the study was to determine the source of the new smooth muscle cells known to develop in these segments on return to breathing air. To accomplish this we determined the reorganization of vessel walls by quantitative light-microscopy techniques, and vascular cell phenotype(s) by high-resolution microscopy, in the lungs of rats that breathed a high oxygen tension (87% O2 for 4 weeks), followed by weaning to a lower oxygen tension (87-20% O2 over 1 week) and return to breathing air (for 1, 2 or 4 weeks). Return to breathing air initially triggered wall growth in a subset of vessels and wall thinning in others before wall thinning predominated throughout the vessel population. Interstitial fibroblasts were identified as the source of new perivascular cells. The recruitment of these cells was accompanied by loss of elastic laminae from vessel walls. Subsequently, most perivascular cells expressed a smooth muscle phenotype and elastic laminae were restored. Arteriography demonstrated an increase in the number of patent vessels on return to air, and light- and high-resolution microscopy restitution of the capillary network. We propose that in the hyperoxia-adapted lung return to breathing air represents a relative hypoxia that triggers differential patterns of vessel and capillary growth to meet new functional demands set by the lower ambient oxygen tension.  相似文献   

11.
PHA-driven monoclonal colony formation by low concentrations of resting T4 lymphocytes in agar culture requires the presence of interleukin 2 (IL 2) and accessory cells. Using recombinant IL 2 and anti-Tac monoclonal antibody as a probe for the IL 2 receptor, we demonstrate that the requirement of accessory cells (here an irradiated B cell line) in inducing IL 2 responsiveness relies on their enhancing effect in functional IL 2 receptor expression by the T colony progenitors. Furthermore, it is shown that cell to cell interaction between accessory cells and colony progenitors results in IL 2 response, i.e., colony formation, when the IL 2 receptor density reaches a critical threshold. The asynchronism in IL 2 responsiveness expression by the T colony progenitors upon activation and the short-lived T cell-accessory cell interaction, due to accessory cell death, determine the 10% colony efficiency of the culture system. In addition, we demonstrate that the accessory function in IL 2 receptor and IL 2 responsiveness expression by the T colony progenitors can be supported by irradiated T lymphocytes as well as B cells. The absence of lineage restriction of the signal delivered by accessory cells, and the requirement of physical interaction between T colony progenitors and accessory cells, emphasize the necessity of cross-linking the activation-signal receptors in inducing IL 2 responsiveness by resting T4 cells.  相似文献   

12.
The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth medium supplemented with serum (3T3 system) or without feeder cells in a dedicated serum-free medium (EpiLife). During the culture, the cells were maintained either at ambient oxygen tension (20%) or at different levels of hypoxia (15, 10, 5, and 2% oxygen). The effect of oxygen on cell growth, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET).  相似文献   

13.
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension.More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels.Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.  相似文献   

14.
The effect of transforming growth factor-β1 (TGFβ1) on three developmental stages of megakaryocytopoiesis was investigated. Using a murine bone marrow agar culture system, titrated doses of TGFβ1 were added to cultures assaying primitive high proliferative megakaryocyte progenitors, committed megakaryocyte precursors, and nondividing, endoreduplicating megakaryocytes. The growth of high proliferative megakaryocyte colony-forming cells (HPP-CFU-Mk) that require the growth factors interleukins-1, 3 and 6 (IL-1 + IL-3 + IL-6) for colony detection was abrogated by the addition of 1 ng TGFβ1/ml. The sensitivity of committed megakaryocyte progenitors (colony-forming unit-megakaryocyte, CFU-Mk) to TGFβ1 depended on the growth factor combination. TGFβ1 (1 ng/ml) completely inhibited megakaryocyte colony formation from CFU-Mk only in cultures stimulated by low doses of IL-3. TGFβ1 (> 10 ng/ml) could only marginally inhibit megakaryocyte colony forrmation generated in the presence of either high doses of IL-3 or the combination of low dose IL-3 + IL-6. TGFβ1 inhibited both IL-3-dependent and IL-6-dependent megakaryocyte growth but tenfold higher doses of TGFβ1 were required to inhibit growth generated by the combination of IL-3 + IL-6. The data showed that the capacity of TGFβ1 to inhibit distinct differentiation stages of the megakaryocytopoietic lineage depended on the concentration and combination of growth factors involved. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Biotransformation of the sesquiterpenoid trans-nerolidol by Aspergillus niger has previously been investigated as a method for the formation of 12-hydroxy-trans-nerolidol, a precursor in the synthesis of the industrially interesting flavor alpha-sinensal. We characterized biotransformations of cis-nerolidol, trans-nerolidol, and a commercially available cis/trans-nerolidol mixture in repeated batch cultures of A. niger grown in computer-controlled bioreactors. On-line quantification of titrant addition in pH control allowed characterization of (1) maximal specific growth rate in exponential growth phases, (2) exponential induction of acid formation in postexponential phases, (3) inhibition of organic acid formation after nerolidol addition, and (4) exponential recovery from this inhibition. Addition of a (+/-)-cis/trans-nerolidol mixture during exponential or postexponential phase to cultures grown in minimal medium at high dissolved oxygen tension (above 50% air saturation), to cultures at low dissolved oxygen tension (5% air saturation), or to cultures grown in rich medium demonstrated that the physiological state before nerolidol addition had a major influence on biotransformation. The maximal molar yield of 12-hydroxy-trans-nerolidol (9%) was obtained by addition of a (+/-)-cis/trans-nerolidol mixture to the culture in the postexponential phase at high dissolved oxygen tension in minimal medium. Similar yields were obtained in rich medium, where the rate of biotransformation was doubled.  相似文献   

16.
We studied the effect of transforming growth factor-beta 1 (TGF-beta 1) on colony formation of leukemic blast progenitors from ten acute myeloblastic leukemia (AML) patients stimulated with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), interleukin-6 (IL-6), or interleukin-1 beta (IL-1 beta). These CSFs and interleukins by themselves stimulated the proliferation of leukemic blast progenitors without adding TGF-beta 1. G-CSF, GM-CSF, and IL-3 stimulated blast colony formation in nine patients, IL-6 stimulated it in five, and IL-1 beta stimulated in four. TGF-beta 1 significantly reduced blast colony formation stimulated by G-CSF, GM-CSF, or IL-6 in all patients. In contrast, TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors from three cases, while in the other seven patients TGF-beta 1 reduced blast colony formation in the presence of IL-3. To study the mechanism by which TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors, we carried out the following experiments in the three patients in which it occurred. First, the media conditioned by leukemic cells in the presence of TGF-beta 1 stimulated the growth of leukemic blast progenitors, but such effect was completely abolished by anti-IL-1 beta antibody. Second, the addition of IL-1 beta in the culture significantly enhanced the growth of blast progenitors stimulated with IL-3. Third, leukemic cells of the two patients studied were revealed to secrete IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) constitutively; the production by leukemic cells of IL-1 beta and TNF-alpha was significantly promoted by TGF-beta 1. Furthermore, the growth enhancing effect of TGF-beta 1 in the presence of IL-3 was fully neutralized by anti-IL-1 beta antibody. These findings suggest that TGF-beta 1 stimulated the growth of blast progenitors through the production and secretion of IL-1 beta by leukemic cells.  相似文献   

17.
Oxygen transfer in the fungal mat is a major concern in solid-state fermentation (SSF). Oxygen supply into the mycelial layers is hampered by diffusion limitation. For aerobic fungi, like Aspergillus oryzae, this oxygen depletion can be a severely limiting factor for growth and metabolite production. This paper describes the effects of a low oxygen concentration on growth at the levels of individual hyphae, colonies and overcultures, and on alpha-amylase production in overcultures. PDA medium was used to study the effect of a low oxygen concentration on hyphal elongation rate and branching frequency of hyphae, and radial extension rate of colonies of A. oryzae. We found similar saturation constants (K(O2)) of 0.1% (v/v in the gas phase) for oxygen concentration described with Monod kinetics, for branching frequency of hyphae and colony extension rate. When A. oryzae was grown as an over-culture on wheat-flour model substrate at 0.25% (v/v) oxygen concentration, the reduction in growth was more pronounced than as individual hyphae and a colony on PDA medium. Experimental results also showed that the specific alpha-amylase production rate under the condition of 0.25% (v/v) oxygen was reduced. Because the value of K(O2) is relatively low, it is reasonable to simplify the kinetics of growth of A. oryzae to zero-order kinetics in coupled diffusion/reaction models.  相似文献   

18.
The effect of biosynthetic human insulin-like growth factor I (IGF-I) and IGF-II on the in vitro growth of human marrow myeloid progenitors in the presence of recombinant human granulocyte colony stimulating factor (rhG-CSF), granulocyte-macrophage CSF (rhGM-CSF), or interleukin-3 (rhIL-3), was investigated. IGF-I and IGF-II similarly enhanced the growth of myeloid progenitors in cultures stimulated with any of the above hemopoietic regulators. Analysis of colony composition showed an increase in the numbers of granulocyte colonies, but no alteration in the numbers of macrophage or granulocyte/macrophage colonies. IGF-I induced an increase of 62 ± 16%, 84 ± 13%, and 107 ± 18% in granulocyte colony numbers in the presence of G-CSF, GM-CSF, or IL-3, respectively. The values for IGF-II were 66 ± 13%, 96 ± 12%, and 91 ± 12%. Similar enhancement of myeloid colony formation by both peptides was also detected in G-CSF and GM-CSF-stimulated cultures of marrow cells that had been depleted of accessory cells, while neither peptide exerted any effect in the presence of IL-3 in such cultures. The growth-promoting effects of IGF-I and IGF-II were completely abrogated by monoclonal antibodies directed against the IGF-I (Type I) membrane receptor. IGF-I and IGF-II thus appear to exert their effects on human marrow myeloid progenitors via a direct mechanism involving the Type I receptor. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Erythroid progenitors from normal human marrow were purified by a two-step immune panning method permitting both the enrichment of erythroid progenitors (plating efficiency up to 10%) and the separation of CFU-E from BFU-E. The purified erythroid progenitors were grown in serum-replaced conditions; in some experiments at an average of one cell per well. Human recombinant granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL3), erythroid potentiating activity (EPA), and human erythropoietin (Epo) either recombinant or homogenous native were tested for their effect on CFU-E growth. Epo was an absolute requirement for CFU-E growth and was sufficient to obtain colony formation at the unicellular level whereas GM-CSF and IL3 did not further increase the plating efficiency. EPA potentiated the effect of Epo on this progenitor only in experiments performed at unicellular level. Human recombinant GM-CSF, IL3, Interleukin 1 alpha (IL1 alpha), and Epo were subsequently tested for their ability to promote BFU-E growth. GM-CSF and IL3 supported the growth of erythroid bursts in the presence of Epo, even at the unicellular level. However, IL3 promoted a higher number of bursts than GM-CSF under all conditions tested. These two growth factors have no or very small additive effects when tested in combination. IL1 alpha added to Epo alone had no effect on the growth of BFU-E whereas it potentiated the combined action of IL3 and GM-CSF on the primitive BFU-E. In conclusion, this study confirms at the unicellular level and under serum-free conditions that erythroid progenitors are regulated by multipotential growth factors in early phases of erythropoiesis and become sensitive only to Epo in later phases of differentiation.  相似文献   

20.
In large-scale microalgal production in tubular photobioreactors, the build-up of O(2) along the tubes is one of the major bottlenecks to obtain high productivities. Oxygen inhibits the growth, since it competes with carbon dioxide for the Rubisco enzyme involved in the CO(2) fixation to generate biomass. The effect of oxygen on growth of Nannochloropsis sp. was experimentally determined in a fully controlled flat-panel photobioreactor operated in turbidostat mode using an incident photon flux density of 100?μmol photons m(-2) s(-1) and with only the oxygen concentration as variable parameter. The dissolved oxygen concentration was varied from 20 to 250% air saturation. Results showed that there was no clear effect of oxygen concentration on specific growth rate (mean of 0.48?±?0.40?day(-1)) upon increasing the oxygen concentration from 20% to 75% air saturation. Upon further increasing the oxygen concentration, however, a linear decrease in specific growth rate was observed, ranging from 0.48?±?0.40?day(-1) at a dissolved oxygen concentration of 75% air saturation to 0.18?±?0.01?day(-1) at 250% air saturation. In vitro data on isolated Rubisco were used to predict the quantum yield at different oxygen concentrations in the medium. The predicted decrease in quantum yield matches well with the observed decrease that was measured in vivo. These results indicate that the effect of oxygen on growth of Nannochloropsis sp. at low light intensity is only due to competitive inhibition of the Rubisco enzyme. At these sub-saturating light conditions, the presence of high concentrations of oxygen in the medium induced slightly higher carotenoid content, but the increased levels of this protective antioxidant did not diminish the growth-inhibiting effects of oxygen on the Rubisco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号