首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated that while the osmotic water permeability (P f ) of neonatal proximal tubules is higher than that of adult tubules, the P f of brush-border membrane vesicles from neonatal rabbits is lower than that of adults. The present study examined developmental changes in the water transport characteristics of proximal tubule basolateral membranes by determining aquaporin 1 (AQP1) protein abundance and the P f in neonatal (10–14 days old) and adult rabbit renal basolateral membrane vesicles (BLMV). At 25°C the P f of neonatal BLMV was significantly lower than the adult BLMV at osmotic gradients ranging from 40 to 160 mOsm/kg water. The activation energies for osmotic water movement were identical in the neonatal and adult BLMV (8.65 ± 0.47 vs. 8.86 ± 1.35 kcal · deg−1· mol−1). Reflection coefficients for sodium chloride and sodium bicarbonate were identical in both the neonatal and adult BLMV and were not different from one. Mercury chloride (0.5 mm) reduced osmotic water movement by 31.3 ± 5.5% in the adult BLMV, but by only 4.0 ± 4.0% in neonatal vesicles (P < 0.01). Adult BLMV AQP1 abundance was higher than that in the neonate. These data demonstrate that neonatal BLMV have a lower P f and AQP1 protein abundance than adults and that a significantly greater fraction of water traverses the basolateral membrane lipid bilayer and not water channels in neonates compared to adults. The lower P f of the neonatal BLMV indicates that the basolateral membrane is not responsible for the higher transepithelial P f in the neonatal proximal tubule. Received: 8 July 1999/Revised: 9 November 1999  相似文献   

2.
Brush border membrane vesicles (BBMV) maintain an initial hydrostatic pressure difference between the intra- and extravesicular medium, which causes membrane strain and surface area expansion (Soveral, Macey & Moura, 1997). This has not been taken into account in prior osmotic water permeability P f evaluations. In this paper, we find further evidence for the pressure in the variation of stopped-flow light scattering traces with different vesicle preparations. Response to osmotic shock is used to estimate water permeability in BBMV prepared with buffers of different osmolarities (18 and 85 mosM). Data analysis includes the dissipation of both osmotic and hydrostatic pressure gradients. P f values were of the order of 4 × 10−3 cm sec−1 independent of the osmolarity of the preparation buffer. Arrhenius plots of P f vs. 1/T were linear, showing a single activation energy of 4.6 kcal mol−1. The initial osmotic response which is significantly retarded is correlated with the period of elevated hydrostatic pressure. We interpret this as an inhibition of P f caused by membrane strain and suggest how this inhibition may play a role in cell volume regulation in the proximal tubule. Received: 8 August 1996/Revised: 4 March 1997  相似文献   

3.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

4.
During postnatal maturation, there is an increase in renal brush border membrane vesicle (BBMV) osmotic water permeability and a parallel increase in aquaporin-1 (AQP1) protein abundance. The mechanisms responsible for these changes remain unknown. Because serum glucocorticoid levels rise postnatally and have previously been linked to other maturational changes in renal function, we examined the effects of glucocorticoids on osmotic (Pf) and diffusional (P(DW)) water permeability and AQP1 protein abundance of renal BBMV. Neonatal rabbits were treated with dexamethasone (10 microg/100 g) for three days and compared with control neonates and adults. Pf and P(DW) were measured at 20 degrees C with a stopped-flow apparatus using light-scattering and aminonaphthalene trisulfonic acid (ANTS) fluorescence, respectively. Pf was significantly higher in BBMV from dexamethasone-treated neonates compared with vehicle-treated neonates, but remained lower than in BBMV from adults (P<0.05). P(DW) in dexamethasone and vehicle-treated neonatal BBMV was lower than in adult BBMV. Pf/P(DW) ratio increased from neonate (5.1+/-0.3) to dexamethasone (7.0+/-0.1) and adult BBMV (6.3+/-0.1). AQP1 expression was increased by dexamethasone treatment to adult levels. Membrane fluidity, which is inversely related to generalized polarization (GP) of steady-state laurdan fluorescence, was significantly higher in neonatal BBMV than both dexamethasone and adult BBMV (GP: neonate 0.285+/-0.002, dexamethasone treatment 0.302+/-0.006, and adult 0.300+/-0.005; P<0.05). These combined results show that dexamethasone-treatment during days 4-7 of life increases BBMV water permeability despite a decrease in membrane fluidity. This occurs by increasing channel-mediated water transport, as reflected in an increase in AQP1 protein abundance and a higher Pf/P(DW) ratio. This mimics the maturational changes and suggests a physiological role for glucocorticoids in maturation of proximal tubule water transport.  相似文献   

5.
We report a novel approach for assessing the volume of living cells which allows quantitative, high-resolution characterization of dynamic changes in cell volume while retaining the cell functionality. The aim of this study was to evaluate the short-term effect of vasopressin on basolateral cell surface water permeability in the outer medullary collecting duct (OMCD). The permeability of the basolateral cell membrane was determined in the tubules where the apical membrane was blocked with oil injected into the lumen. The apparent coefficient of water permeability (P f) was evaluated by measuring the cell swelling after the step from hypertonic to isotonic medium (600 mosm to 300 mosm). Desmopressin (dDAVP) induced an increase of the basolateral P f from 113.7±8.5 μm/s in control cells to 186.6±11.4 μm/s in micro-dissected fragments of the OMCD incubated in vitro (10−7 M dDAVP, 30 min at 37 °C) (P<0.05). Mercury caused pronounced inhibition of basolateral water permeability (26.0±6.9 μm/s; P<0.05). The effect of mercury (1.0 mM HgCl2) was reversible: after washing the fragments with PBS for 20 min, P f values were restored to the control levels (125.0±9.5 μm/s). The results of the study indicate the existence of a mechanism controlling the osmotic water permeability of the basolateral cell membrane in the OMCD epithelium.  相似文献   

6.
The routes water takes through membrane barriers is still a matter of debate. Although aquaporins only allow transmembrane water movement along an osmotic gradient, cotransporters are believed to be capable of water transport against the osmotic gradient. Here we show that the renal potassium-chloride-cotransporter (KCC1) does not pump a fixed amount of water molecules per movement of one K+ and one Cl, as was reported for the analogous transporter in the choroid plexus. We monitored water and potassium fluxes through monolayers of primary cultured renal epithelial cells by detecting tiny solute concentration changes in the immediate vicinity of the monolayer. KCC1 extruded K+ ions in the presence of a transepithelial K+ gradient, but did not transport water. KCC1 inhibition reduced epithelial osmotic water permeability Pf by roughly one-third, i.e., the effect of inhibitors was small in resting cells and substantial in hormonal stimulated cells that contained high concentrations of aquaporin-2 in their apical membranes. The furosemide or DIOA (dihydroindenyl-oxy-alkanoic acid)-sensitive water flux was much larger than expected when water passively followed the KCC1-mediated ion flow. The inhibitory effect of these drugs on water flux was reversed by the K+-H+ exchanger nigericin, indicating that KCC1 affects water transport solely by K+ extrusion. Intracellular K+ retention conceivably leads to cell swelling, followed by an increased rate of endocytic AQP2 retrieval from the apical membrane.  相似文献   

7.
The mammalian renal collecting duct increases its water permeability in response to antidiuretic hormone (ADH). ADH causes cytoplasmic endosomes containing the water channel, aquaporin 2 (AQP2), to fuse with the apical membrane so that the water permeability of the tubule increases many times above baseline. SNARE proteins are involved in the docking and fusion of vesicles with the cell membrane in neuron synapses. Whether these proteins are involved in the fusion of vesicles to the cell membrane in other tissues is not entirely clear. In the present study, we examined the role of SNARE proteins in the insertion of water channels in the collecting-duct response to ADH by using botulinum toxins A, B and C. Toxins isolated from clostridium botulinum are specific proteases that cleave different SNARE proteins and inactivate them. Tubules were perfused in vitro with botulinum toxin in the perfusate (50 nM for A and B and 15 nM for C). ADH (200 pM) was then added to the bath after baseline measurements of osmotic water permeability (Pf) and the change in Pf was followed for one hour. Botulinum toxins significantly inhibited the maximum Pf by approximately 50%. Botulinum toxins A and C also decreased the rate of rise of Pf. Thus, SNARE proteins are involved in the insertion of the water channels in the collecting duct.  相似文献   

8.
Transepithelial water permeability was measured in LLC-PK1 cells stably transfected with aquaporins (AQPs): AQP1, AQP2, and a chimera of AQP1 and AQP2 containing 41 amino acids of the C-terminus of AQP2. Transepithelial water fluxes (Jw) were not previously reported in cells transfected with aquaporins. Jw were now recorded each minute using a specially developed experimental device. A significant increase in Posm after forskolin (FK) plus vasopressin (VP) was found in AQP2 transfected cells (39.9 ± 8.2 vs. 12.5 ± 3.3 cm · sec−1· 10−3), but not in cells transfected with AQP1 (15.3 ± 3.6 vs. 13.4 ± 3.6 cm · sec−1· 10−3). In the case of the AQP1/2 cells (chimera) the FK plus VP induced Posm was smaller than in AQP2 cells but significantly higher than in mock cells at rest (18.1 ± 4.8 vs. 6.7 ± 1.0 cm · sec−1· 10−3). The increases in Posm values were not paralleled by increases in 14C-Mannitol permeability. HgCl2 inhibited the hydrosmotic response to FK plus VP in AQP2 transfected epithelia. Results were comparable to those observed, in parallel experiments, in a native ADH-sensitive water channel containing epithelial barrier (the toad urinary bladder). Electron microscopy showed confluent LLC-PK1 cells with microvilli at the mucosal border. The presence of spherical or elongated intracellular vacuoles was observed in AQP2 transfected cells, specially after FK plus VP stimulus and under an osmotic gradient. These results demonstrate regulated transepithelial water permeability in epithelial cells transfected with AQP2. Received: 24 June 1997/Revised: 16 September 1997  相似文献   

9.
Brush border membrane vesicles (BBMV) from rabbit kidney proximal tubule cells, prepared with different internal solute concentrations (cellobiose buffer 13, 18 or 85 mosM) developed an hydrostatic pressure difference across the membrane of 18.7 mosM, that causes a membrane tension close to 5 × 10−5 N cm−1. When subjected to several hypertonic osmotic shocks an initial delay of osmotic shrinkage (a lag time), corresponding to a very small change in initial volume was apparent. This initial osmotic response, which is significantly retarded, was correlated with the initial period of elevated membrane tension, suggesting that the water permeability coefficient is inhibited by membrane stress. We speculate that this inhibition may serve to regulate cell volume in the proximal tubule.  相似文献   

10.
The mammalian exocrine pancreas secretes a near-isosmotic fluid over a wide osmolarity range. The role of aquaporin (AQP) water channels in this process is now becoming clearer. AQP8 water channels, which were initially cloned from rat pancreas, are expressed at the apical membrane of pancreatic acinar cells and contribute to their osmotic permeability. However, the acinar cells secrete relatively little fluid and there is no obvious defect in pancreatic function in AQP8 knockout mice. Most of the fluid secreted by the pancreas is generated by ductal epithelial cells, which comprise only a small fraction of the gland mass. In the human pancreas, secretion occurs mainly in the intercalated ducts, where the epithelial cells express abundant AQP1 and AQP5 at the apical membrane and AQP1 alone at the basolateral membrane. In the rat and mouse, fluid secretion occurs mainly in the interlobular ducts where AQP1 and AQP5 are again co-localized at the apical membrane but appear to be expressed at relatively low levels. Nonetheless, the transepithelial osmotic permeability of rat interlobular ducts is sufficient to support near-isosmotic fluid secretion at observed rates. Furthermore, apical, but not basolateral, application of Hg2+ significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion. The apparently normal fluid output of the pancreas in AQP1 knockout mice may reflect the presence of AQP5 at the apical membrane.  相似文献   

11.
Signals that regulate GLUT4 translocation   总被引:7,自引:0,他引:7  
We have shown that there is a maturational increase in osmotic water permeability (Pf) of rabbit renal brush border membrane vesicles (BBMV). The purpose of the present study was to further investigate the changes in proximal tubule water transport that occur during postnatal development. Diffusional water permeability (PDW) has not been measured directly in adult or neonatal BBMV. We validated the method described by Ye and Verkman (Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824-829, 1989) to measure PDW in red cell ghosts and liposomes, to examine the maturational changes in PDW in BBMV. This method utilizes the sensitivity of 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS) fluorescence to the D2O-H2O content of the solvent. ANTS-loaded neonatal (11 days old) and adult BBMV were rapidly mixed with two volumes of isoosmotic D2O solution using a stopped-flow apparatus at 5 degrees -37 degrees C. PDW was lower in neonatal than adult BBMV at 5 degrees (3.77 +/- 0.34 vs. 5.35 +/- 0.43 mm/sec, respectively, p<0.05) and 20 degrees C (7.03 +/- 0.40 vs. 9.04 +/- 0.25 mm/sec, respectively, p<0.001), but was not different at 30 degrees and 37 degrees C. The activation energy (Ea) was higher in neonatal than in adult BBMV (9.29 +/- 0.56 kcal/mol vs. 6.46 +/- 0.56 kcal/mol, p<0.001). In adult BBMV, PDW was inhibited by 0.5 mM HgCl2 by 46.6 +/- 3.6%, while it was not affected in neonatal BBMV (p<0.001). The results indicate that PDW can be measured in rabbit renal BBMV. There are significant changes in water transport across the apical membrane during postnatal development, consistent with a maturational increase in channel-mediated water transport.  相似文献   

12.
The water permeability of the apical and basolateral cell membranes and the compliance of the lateral intercellular spaces (LIS) of MDCK monolayers were measured on confluent cultures grown on permeable supports. Cell membrane water permeabilities were determined, using quantitative differential interference light microscopy, from the rate of cell volume decrease after exposure to a hyperosmotic bathing solution. Both membranes exhibited osmotic water permeabilities (POSM) of ∼10 μm/sec, comparable to that of unmodified lipid bilayers. The compliance of the cell membranes forming the lateral intercellular space (LIS) between cells was determined from the pressure-volume relation. Confocal microscopy of fluorescent labeling of the basolateral cell membranes was used to delineate the LIS geometry as transepithelial hydrostatic pressure was varied. The LIS were poorly deformable as a function of transepithelial hydrostatic pressure until a pressure of ≥8 cm H2O (basolateral > apical) was reached where catastrophic failure of intercellular connections occurred. The compliance of the LIS was calculated from the geometry changes at pressures <8 cm H2O and ranged from 0.05–0.11 cm H2O−1, comparable to that previously predicted in mathematical models of the rat proximal tubule. Received: 10 January 1996/Revised: 9 May 1996  相似文献   

13.
Summary Water transport across the mammalian collecting tubule is regulated by vasopressin-dependent water channel insertion into and retrieval from the cell apical membrane. The time course of osmotic water permeability (P f ) following addition and removal of vasopressin (VP) and 8-Br-cAMP was measured continuously by quantitative fluorescence microscopy using an impermeant fluorophore perfused in the lumen. Cortical collecting tubules were subjected to a 120 mOsm bath-to-lumen osmotic gradient at 37°C with 10–15 nl/min lumen perfusion and 10–20 ml/min bath exchange rate. With addition of VP (250 U/ml), there was a 23±3 sec (sem,n=16) lag in whichP f did not change, followed by a rise inP f (initial rate 1.4±0.2×10–4 cm/sec2) to a maximum of 265±10×10–4 cm/sec. With addition of 8-Br-cAMP (0.01–1mm) there was an 11±2 sec lag. For [8-Br-cAMP]=0.01, 0.1 and 1mm, the initial rate ofP f increase following the lag was (units 10–4 cm/sec2): 1.1±0.1, 1.2±0.1 and 1.7±0.3. MaximumP f was (units 10–4 cm/sec): 64±4, 199±9 and 285±11. With removal of VP,P f decreased to baseline (12×10–4 cm/sec) with aT 1/2 of 18 min; removal of 0.1 and 1mm 8-Br-cAMP gaveT 1/2 of 4 and 8.5 min. These results demonstrate (i) a brief lag in theP f response, longer for stimulation by VP than by 8-Br-cAMP, representing the transient build-up of biochemical intermediates proximal to the water channel insertion step, (ii) similar initialdP f /dt (water channel insertion) over a wide range of [8-Br-cAMP] and steady-stateP f values, and (iii) more rapidP f decrease with removal of 8-Br-cAMP than with VP. These pre-steady-state results define the detailed kinetics of the turn-on and turn-off of tubuleP f and provide kinetic evidence that the rate-limiting step for turn-on ofP f is not the step at which VP regulates steady-stateP f . If water channel insertion is assumed to be the rate-limiting step in the turn-on ofP f , these results raise the possibility that water channels must be activated following insertion into the apical membrane.  相似文献   

14.
15.
The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.  相似文献   

16.
The effects of amino acids (aa) and N-(diisopropyloxyphosphoryl)-amino acids (DIPP-aa) on cell membranes were investigated by evaluating water and methyl urea permeability. Permeability coefficients Pf and Ps were determined by standard osmotic methods for cells ofPisum sativum stem base epidermis after 20 min exposure to a 5 mM solution of each aa and DIPP-aa. The Pf value ofP. sativum epidermal cells (untreated controls) was 1.3 ± 0.4 × 10-3 μm s-1. Treat ments with the diisopropyl-oxyphosphoryl derivatives of three one charged and three polar amino acids (serine, threonine, asparagine, and aspartic acid) and unsubstituted (free) serine and threonine increased water permeability up to about two fold of the control value. Serine and threonine and their DIPP-derivatives increased methyl urea permeability (controls 1.03 ± 0.09 × 10-3 μm s-1) 30 to 80 percent Other amino acids and their DIPP-derivatives caused small or insignificant changes of water permeability. Only certain polar amino acids and their DIPP-derivatives increased the osmotic water and methyl urea permeation through the plasma membrane. The specificity of these molecules on plasma membranes suggests that the active amino acids (serine and threonine) and their DIPP-derivatives interact with charged membrane molecules. The relatively small changes in water and methyl urea permeability may indicate that the effective aa’s and their DIPP-derivatives interact with phospholipids rather than aquaporin. A concurring alteration of water channel proteins, however, cannot excluded.  相似文献   

17.
Background information. Mercurials inhibit AQPs (aquaporins), and site‐directed mutagenesis has identified Cys189 as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury‐insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys189 of AQP1. Indeed, the osmotic water permeability (Pf) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His‐tagged rAPR4 (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+‐nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. Results. The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped‐flow apparatus. Surprisingly, the Pf of AQP4 proteoliposomes was significantly decreased by 5 μM HgCl2 within 30 s, and this effect was completely reversed by 2‐mercaptoethanol. The dose‐ and time‐dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site‐directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys178, which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. Conclusions. Our results suggest that mercury inhibits the Pf of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

18.
In the rabbit as well as the rat, a Na+/H+ exchanger is expressed in the apical membrane of both the proximal and distal tubules of the renal cortex. Whereas the isoform derived from the proximal tubule has been extensively studied, little information is available concerning the distal luminal membrane isoform. To better characterize the latter isoform, we purified rabbit proximal and distal tubules, and examined the ethylpropylamiloride (EIPA)-sensitive 22Na uptake by the luminal membrane vesicles from the two segments. The presence of 100 μm EIPA in the membrane suspension decreased the 15 sec Na+ uptake to 75.70 ± 4.70% and 50.30 ± 2.23% of the control values in vesicles from proximal and distal tubules, respectively. The effect of EIPA on 35 mm Na+ uptake was concentration dependent, with a IC50 of 700 μm and 75 μm for the proximal and distal luminal membranes. Whereas the proximal tubule membrane isoform was insensitive to cimetidine and clonidine up to a concentration of 2 mm, the 35 mm Na+ uptake by the distal membrane was strongly inhibited by cimetidine (IC50 700 μm) and modestly inhibited by clonidine (IC50 1.6 mm). The incubation of proximal tubule suspensions with 1 mm (Bu2) cAMP decreased the 15-sec EIPA-sensitive Na+ uptake by the brush border membranes to 24.1 ± 2.38% of the control values. Unexpectedly, the same treatment of distal tubules enhanced this uptake by 46.5 ± 10.3%. Finally, incubation of tubule suspensions with 100 nm phorbol 12-myristate 13-acetate (PMA) decreased the exchanger activity to 58.6 ± 3.04% and 79.7 ± 3.21% of the control values in the proximal and distal luminal membranes, respectively. In conclusion, the high sensitivity of the distal luminal membrane exchanger to various inhibitors, and its stimulation by cAMP-dependent protein kinase A, indicate that this isoform differs from that of the proximal tubule and probably corresponds to isoform 1. Received: 6 March 1998/Revised: 6 July 1998  相似文献   

19.
The transport mechanisms of Ambystoma proximal tubule that mediate transcellular Cl absorption linked to Na+ were investigated in isolated perfused tubules using Cl-selective and voltage-recording microelectrodes. In control solutions intracellular activity of Cl (a i Cl ) is 11.3 ± 0.5 mm, the basolateral (V 1 ), apical (V 2 ), and transepithelial (V 3 ) potential differences are −68 ± 1.2 mV, +62 ± 1.2 mV and −6.4 ± 0.3 mV, respectively. When Na+ absorption is decreased by removal of organic substrates from the lumen, a i Cl falls by 1.3 ± 0.3 mm and V 2 hyperpolarizes by +11.4 ± 1.7 mV. Subsequent removal of Na+ from the lumen causes a i Cl to fall further by 2.3 ± 0.4 mm and V 2 to hyperpolarize further by +15.3 ± 2.4 mV. The contribution of transporters and channels to the observed changes of a i Cl was examined using ion substitutions and inhibitors. Apical Na/Cl or Na/K/2Cl symport is excluded because bumetanide, furosemide or hydrochlorothiazide have no effect on a i Cl . The effects of luminal HCO 3 removal and/or of disulfonic stilbenes argue against the presence of apical Cl-base exchange such as Cl-HCO3 or Cl-OH. The effects of basolateral HCO 3 removal, of basolateral Na+ removal and/or of disulfonic stilbenes are compatible with presence of basolateral Na-independent Cl-base exchange and Na-driven Cl-HCO3 exchange. Several lines of evidence favor conductive Cl transport across both the apical and basolateral membrane. Addition of the chloride-channel blocker diphenylamine-2-carboxylate to the lumen or bath, increases the a i Cl by 2.4 ± 0.6 mm or 2.9 ± 1.0 mm respectively. Moreover, following inhibition by DIDS of all anion exchangers in HCO 3-free Ringer, the equilibrium potential for Cl does not differ from the membrane potential V 2 . Finally, the logarithmic changes in a i Cl in various experimental conditions correlate well with the simultaneous changes in either basolateral or apical membrane potential. These findings strongly support the presence of Cl channels at the apical and basolateral cell membranes of the proximal tubule. Received: 14 November 1997/Revised: 6 July 1998  相似文献   

20.
A voltage-activated Ca++ channel has been identified in the apical membranes of cultured rabbit proximal tubule cells using the patch-clamp technique. With 105 mm CaCl2 solution in the pipette and 180 NaAsp in the bath, the channel had a conductance of 10.4 ± 1.0 pS (n= 8) in on-cell patches, and 9.8 ± 1.1 pS (n= 8) in inside-out patches. In both on-cell and inside-out patches, the channel is active by membrane depolarization. For this channel, the permeation to Ba++ and Ca++ is highly selective over Na+ and K+ (PCa(Ba):PNa(K) >200:1). The sensitivity to dihydropyridines is similar to that for L-type channels where the channel was blocked by nifedipine (10 μm), and activated by Bay K 8644 (5 μm). When activated by Bay K 8644, the channel showed subconductance levels. Treatment with forskolin (12.5 μm), phorbol ester (1 μm), or stretching (40 cm water) did not activate this channel. These results indicate that this Ca++ channel is mostly regulated by membrane voltage, and appears to be an epithelial class of L-type Ca++ channel. As such, it may participate in calcium reabsorption during periods of enhanced sodium reabsorption, or calcium signaling in volume regulation, where membrane depolarization occurs for prolonged periods. Received: 1 April 1996/Revised: 5 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号