首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
T Bettecken  B Aissani  C R Müller  G Bernardi 《Gene》1992,122(2):329-335
The genomes of warm-blooded vertebrates are mosaics of long DNA segments (> 300 kb, on the average), the isochores, homogeneous in GC levels, which belong to a small number of compositional families. In the present work, the human dystrophin-encoding gene, spanning more than 2.3 Mb in Giemsa band Xp21 (on the short arm of the X chromosome), was analyzed in its isochore organization by hybridizing cDNA probes, corresponding to eight contiguous segments of the coding sequence, on compositional fractions from human DNA. Five DNA regions of uniform (+/- 0.5%) GC content, separated by compositional discontinuities of about 2% GC, were found, so providing the first high-resolution compositional map obtained for a human genome locus and the first direct estimate of isochore size (360 kb to more than 770 kb, in the locus under consideration). One of the isochores contains 71% and another one 21% of deletion breakpoints found in patients suffering from Duchenne's and Becker's muscular dystrophies.  相似文献   

2.
Isochore patterns and gene distributions in fish genomes   总被引:2,自引:0,他引:2  
The compositional approach developed in our laboratory many years ago revealed a large-scale compositional heterogeneity in vertebrate genomes, in which GC-rich and GC-poor regions, the isochores, were found to be characterized by high and low gene densities, respectively. Here we mapped isochores on fish chromosomes and assessed gene densities in isochore families. Because of the availability of sequence data, we have concentrated our investigations on four species, zebrafish (Brachydanio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), and pufferfish (Tetraodon nigroviridis), which belong to four distant orders and cover almost the entire GC range of fish genomes. These investigations produced isochore maps that were drastically different not only from those of mammals (in that only two major isochore families were essentially present in each genome vs five in the human genome) but also from each other (in that different isochore families were represented in different genomes). Gene density distributions for these fish genomes were also obtained and shown to follow the expected increase with increasing isochore GC. Finally, we discovered a remarkable conservation of the average size of the isochores (which match replicon clusters in the case of human chromosomes) and of the average GC levels of isochore families in both fish and human genomes. Moreover, in each genome the GC-poorest isochore families comprised a group of "long isochores" (2-20 Mb in size), which were the lowest in GC and varied in size distribution and relative amount from one genome to the other.  相似文献   

3.
The vertebrate genome: isochores and evolution   总被引:18,自引:6,他引:12  
  相似文献   

4.
Vertebrate genomes are mosaics of megabase-size DNA segments with a fairly homogeneous base composition, called isochores. They are divided into five families characterized by different guanine-cytosine (GC) levels and linked to several functional and structural properties. The increased availability of fully sequenced genomes allows the investigation of isochores in several species, assessing their level of conservation across vertebrate genomes. In this work, we characterized the isochores in Bos taurus using the ARS-UCD1.2 genome version. The comparison of our results with the well-studied human isochores and those of other mammals revealed a large conservation in isochore families, in number, average GC levels and gene density. Exceptions to the established increase in gene density with the increase in isochores (GC%) were observed for the following gene biotypes: tRNA, small nuclear RNA, small nucleolar RNA and pseudogenes that have their maximum number in H2 and H1 isochores. Subsequently, we assessed the ontology of all gene biotypes looking for functional classes that are statistically over- or under-represented in each isochore. Receptor activity and sensory perception pathways were significantly over-represented in L1 and L2 (GC-poor) isochores. This was also validated for the horse genome. Our analysis of housekeeping genes confirmed a preferential localization in GC-rich isochores, as reported in other species. Finally, we assessed the SNP distribution of a bovine high-density SNP chip across the isochores, finding a higher density in the GC-rich families, reflecting a potential bias in the chip, widely used for genetic selection and biodiversity studies.  相似文献   

5.
Sazanov  A. A.  Sazanova  A. L.  Kozyreva  A. A.  Smirnov  A. F.  Andreozzi  L.  Federico  C.  Motta  S.  Saccone  S.  Bernardi  G. 《Russian Journal of Genetics》2003,39(6):681-686
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA–DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

6.
The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

7.
The distribution of various isochore families on mitotic chromosomes of domestic chicken and Japanese quail was studied by the method of fluorescence in situ DNA--DNA hybridization (FISH). DNA of various isochore families was shown to be distributed irregularly and similarly on chromosomes of domestic chicken and Japanese quail. The GC-rich isochore families (H2, H3, and H4) hybridized mainly to microchromosomes and a majority of macrochromosome telomeric regions. In chicken, an intense fluorescence was also in a structural heterochromatin region of the Z chromosome long arm. In some regions of the quail macrochromosome arms, hybridization was also with isochore families H3 and H4. On macrochromosomes of both species, the pattern of hybridization with isochores of the H2 and H3 families resembled R-banding. The light isochores (L1 and L2 families) are mostly detected within macrochromosome internal regions corresponding to G bands, whereas microchromosomes lack light isochores. Although mammalian and avian karyotypes differ significantly in organization, the isochore distribution in genomes of these two lineages of the warm-blooded animals is similar in principle. On macrochromosomes of the two avian species studied, a pattern of isochore distribution resembled that of mammalian chromosomes. The main specific feature of the avian genome, a great number of microchromosomes (about 30% of the genome), determines a compositional specialization of the latter. This suggests the existence of not only structural but also functional compartmentalization of the avian genome.  相似文献   

8.
In meiotic prophase I, chromatin fibrils attached to the lateral elements of the synaptonemal complexes (SC) form loops. SCAR DNA (synaptonemal complex associated regions of DNA) is a family of genomic DNA tightly associated with the SC and located at the chromatin loop basements. Using the hybridization technique, it was demonstrated that localization of SCAR DNA was evolutionarily conserved in the isochore compositional fractions of the three examined genomes of warm-blooded vertebrates—human, chicken, and golden hamster. The introduction of the concept of the comparative loops (CL) of DNA that form of chromatin attach to SC in the isochore compositional fractions provided the calculation of their length. An inverse proportional relationship between the length of CL DNA and the GC level in the isochore compartments of the studied warm-blooded vertebrate genomes was revealed. An exception was the GCpoorest L1 isochore family. For different compositional isochores of the human and chicken genomes, the number of genes in the CL DNA was evaluated. A model of the formation of GC-rich isochores in vertebrate genomes, according to which there was not only an increase in the GC level but also the elimination of functionally insignificant noncoding DNA regions, as well as joining of isochores decreasing in size, was suggested.  相似文献   

9.
Abstract

The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

10.
The human genome is a mosaic of isochores, which are long DNA segments (300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.  相似文献   

11.
《Gene》1997,194(1):107-113
A compositional map of the centromere and of the subcentromeric region of the long arm of human chromosome 21 was established by determining the GC levels (GC is the molar fraction of guanine+cytosine in DNA) of 11 YACs (yeast artificial chromosomes) covering this 13–14 Mb region which extends from the α-satellite sequences of the C(entromeric) band qll.1, through R(everse) band q11.2, to the proximal part of G(iemsa) band q21. The entire region is made up of GC-poor, or L, isochores with only one GC-rich H1 isochore, at least 2 Mb in size, located in band q21. The almost identical GC levels of the centromeric α-satellite repeats (38.5%), of R band q11.2 (39%), and of G bands (38–40%) provide a direct demonstration that base composition cannot be the only cause of the cytogenetic differences between C, G, and the majority of R bands, namely the H3- R bands (which do not contain the GC-richest H3 isochores). The results obtained also show that isochores may be as long as 6 Mb, at least in the GC-poor regions of the genome, and support previous observations suggesting that YACs from isochore borders are unstable and/or difficult to clone. Genes and CpG islands are very rare in the GC-poor region investigated, as expected from the fact that their concentration is proportional to the GC levels of the isochores in which they are contained.  相似文献   

12.
The mammalian genome is not a random sequence but shows a specific, evolutionarily conserved structure that becomes manifest in its isochore pattern. Isochores, i.e. stretches of DNA with a distinct sequence composition and thus a specific GC content, cause the chromosomal banding pattern. This fundamental level of genome organization is related to several functional features like the replication timing of a DNA sequence. GC richness of genomic regions generally corresponds to an early replication time during S phase. Recently, we demonstrated this interdependency on a molecular level for an abrupt transition from a GC-poor isochore to a GC-rich one in the NF1 gene region; this isochore boundary also separates late from early replicating chromatin. Now, we analyzed another genomic region containing four isochores separated by three sharp isochore transitions. Again, the GC-rich isochores were found to be replicating early, the GC-poor isochores late in S phase; one of the replication time zones was discovered to consist of one single replicon. At the boundaries between isochores, that all show no special sequence elements, the replication machinery stopped for several hours. Thus, our results emphasize the importance of isochores as functional genomic units, and of isochore transitions as genomic landmarks with a key function for chromosome organization and basic biological properties.  相似文献   

13.
The isochore organization of the mammalian genome comprises a general pattern and some special patterns, the former being characterized by a wider compositional distribution of the DNA fragments. The large majority of the mammalian genomes belong to the former, and only some groups, such as the Myomorpha sub-order of Rodentia, belong to the latter. Here we describe the compositional organization of the pig (Sus scrofa) genome that belongs to the general mammalian pattern. We investigated (i) the compositional distribution of the genes by analysis of their GC3 levels (the GC levels at the third codon positions), and (ii) the correlation between the GC3 value of orthologous genes from pig and other vertebrates (human, calf, mouse, chicken, and Xenopus). As expected, the highest gene concentration corresponded to the H3 isochore family, and the highest GC3 correlations were observed in the pig/human and pig/calf comparisons. Then we identified, by in situ hybridization of the GC-richest H3 isochores, the pig chromosomal regions endowed by the highest gene-density that largely corresponded to the telomeric chromosomal bands. Moreover, we observed that these gene-rich bands are syntenic with the previously identified GC-richest/gene richest H3+ bands of the human chromosomes. At the cell nucleus level, we observed that the gene-dense region corresponded to the more internal compartment, as previously found in human and avian cell nuclei.  相似文献   

14.
DNA methylation is a major epigenetic modification of the genome that affects basic biological functions, such as gene expression and cell development. We used the human genome sequences and the DNA methylation data that are available in order to establish a map of the levels of GC and methylation in isochores. We also looked for the correlations that hold between GC levels and the distribution of the (1) dinucleotide CpG, (2) ratio 5mC/CpG, and (3) CpG islands. Our results show that methylation levels, CpG frequencies, and the density of CpG islands are positively correlated with the GC level of isochores. In contrast, the correlation between the 5mC/CpG ratio and GC is a negative one because the increase in methylation lags behind that of CpG, to reach a plateau in the GC-richest, gene-richest isochore families H2 and H3. In conclusion, there are more CpG targets that remain unmethylated in the GC-richest, gene-richest isochores in comparison with the other isochores. This conclusion supports the idea that the widespread methylation under consideration here has a general inhibitory effect on gene expression.  相似文献   

15.
We have hybridized the vertebrate telomeric sequence (TTAGGG)n on DNA compositional fractions from 13 mammalian species and 3 avian species, representing 9 and 3 orders, respectively. Our results indicate that the 50- to 100-kb fragments derived from telomeric regions are composed of GC-rich and GC-richest isochores. Previous works from our laboratory demonstrated that single-copy sequences from the human H3 isochore family (the GC-richest and gene-richest isochore in the human genome) share homology with compositionally correlated compartments of warm-blooded vertebrates. This correlation suggested that the GC-richest isochores are, as in the human genome, the gene-richest regions of warm-blooded vertebrates' genome. Moreover, this evidence suggests that telomeric regions are the most gene-dense region of all warm-blooded vertebrates. The implications of these findings are discussed.  相似文献   

16.
The synaptonemal complex isolated from the spermatocyte nuclei by exhaustive hydrolysis of the latter by DNase II contains tightly associated DNA sequences (SCAR DNA). Here we studied the compositional properties of a cloned family of SCAR DNA of golden hamster, namely we performed the localization of 27 SCAR DNA clones on compositionally fractionated genomic DNA from golden hamster. We observed that sequences of the SCAR DNA family are mainly localized in the GC-poor isochore families L1 and L2, that showed 63% hybridization signals. This means that 37% of signals is referred to the GC-rich isochores, indicating the presence of SCAR DNA overall the genome, even if each isochore family presents differences in density and sequence type. Moreover, the SCAR DNA sequences containing regions of homology with LINE/SINE repeats were observed in all the isochore families. The compositional localization of SCAR DNA is in agreement with the hypothesis that SC and SCAR DNA participate in the chromatin organization during the meiosis prophase I, which should result in the attachment of chromatin loops to lateral elements of SC along the whole length of the latter.  相似文献   

17.
The genomes of eukaryotes are mosaics of isochores. These are long DNA stretches that are fairly homogeneous in base composition and that belong to a small number of families characterized by different ratios of GC to AT and different short-sequence patterns (i.e., different DNA structures that interact with different proteins). This genome organization led to two discoveries: (1) the genomic code, which refers to two correlations, that of the composition of coding and contiguous noncoding sequences, and that of coding sequences and the structural properties of the encoded proteins; and (2) the genome phenotypes, which correspond to the patterns of isochore families in the genomes. These patterns indicate that genome evolution may proceed either according to a conservative mode or to a transitional (isochore shifting) mode, apparently depending upon whether the environment is constant or shifting. According to the neoselectionist theory, natural selection is responsible for both modes.  相似文献   

18.
In a recent paper in these pages, Cohen et al. search for isochores in the human genome, based on a system of attributes that they assign to isochores. The putative isochores that they find and choose for presentation are almost all below 45% GC and cover only about 41% of the genome. Closer inspection reveals that the authors' methodology systematically loses GC-rich isochores because it does not anticipate the considerable fluctuations and corresponding long-range correlations that characterize mammalian DNA and that are highest in GC-rich DNA. Thus, they over-fragment GC-rich isochores (and also many GC-poor isochores) beyond recognition.  相似文献   

19.
Bernardi G 《Gene》2000,241(1):3-17
The nuclear genomes of vertebrates are mosaics of isochores, very long stretches (>300kb) of DNA that are homogeneous in base composition and are compositionally correlated with the coding sequences that they embed. Isochores can be partitioned in a small number of families that cover a range of GC levels (GC is the molar ratio of guanine+cytosine in DNA), which is narrow in cold-blooded vertebrates, but broad in warm-blooded vertebrates. This difference is essentially due to the fact that the GC-richest 10-15% of the genomes of the ancestors of mammals and birds underwent two independent compositional transitions characterized by strong increases in GC levels. The similarity of isochore patterns across mammalian orders, on the one hand, and across avian orders, on the other, indicates that these higher GC levels were then maintained, at least since the appearance of ancestors of warm-blooded vertebrates. After a brief review of our current knowledge on the organization of the vertebrate genome, evidence will be presented here in favor of the idea that the generation and maintenance of the GC-richest isochores in the genomes of warm-blooded vertebrates were due to natural selection.  相似文献   

20.
Whole-genome association studies will be a powerful tool to identify genes responsible for common human diseases. A crucial task for association-mapping studies is the evaluation of the relationship between linkage disequilibrium (LD) and physical distance for the genomic region under study. Since it is known that the extent of LD is nonuniformly distributed throughout the human genome, the required marker density has to be determined specifically for the region under study. These regions may be related to isochores and chromosomal bands, as indicated by earlier cytogenetic findings concerning chiasma distribution in meiosis. Therefore we analyzed the neurofibromatosis type 1 (NF1) gene region on chromosome 17q11.2, which is characterized by a nonuniform LD pattern and an L1-to-H2 isochore transition. Long-range LD within the NF1 gene was found to extend over 200 kb (D' = 0.937) in the L1 isochore, whereas, in the neighboring H2 isochore, no LD is apparent between markers spaced by 26 kb (D' = 0.144). Recombination frequencies derived from the LD are at.00019 (high LD) and.01659 (low LD) per megabase, the latter identical to the average value from segregation analysis. The boundary between these regions coincides precisely with a transition in the GC content of the sequences, with low values (37.2%) in the region with long-range LD and high values (51%) in the other. Our results suggest a correlation between the LD pattern and the isochores, at least in the NF1 region. If this correlation can be generalized, the marker densities required for association studies have to be adjusted to the regional GC content and may be chosen according to the isochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号