首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
Cancer cachexia is a syndrome characterised by a marked weight loss, anorexia, asthenia and anaemia. In fact, many patients who die with advanced cancer suffer from cancer cachexia. The cachectic state is invariably associated with the presence and growth of the tumour and leads to a malnutrition status due to the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumour and the host leads to an accelerated starvation state which promotes severe metabolic disturbances in the host, including hypermetabolism which leads to an increased energetic inefficiency. Although, the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. The main aim of the present review is to summarise and evaluate the different catabolic mediators (both humoural and tumoural) involved in cancer cachexia since they may represent targets for future promising clinical investigations.  相似文献   

3.
The aim of the present review is to summarize and evaluate the different mechanisms and catabolic mediators involved in cancer cachexia and ageing sarcopenia since they may represent targets for future promising clinical investigations. Cancer cachexia is a syndrome characterized by a marked weight loss, anorexia, asthenia and anemia. In fact, many patients who die with advanced cancer suffer from cachexia. The degree of cachexia is inversely correlated with the survival time of the patient and it always implies a poor prognosis. Unfortunately, at the clinical level, cachexia is not treated until the patient suffers from a considerable weight loss and wasting. At this point, the cachectic syndrome is almost irreversible. The cachectic state is often associated with the presence and growth of the tumour and leads to a malnutrition status due to the induction of anorexia. In recent years, age-related diseases and disabilities have become of major health interest and importance. This holds particularly for muscle wasting, also known as sarcopenia, that decreases the quality of life of the geriatric population, increasing morbidity and decreasing life expectancy. The cachectic factors (associated with both depletion of fat stores and muscular tissue) can be divided into two categories: of tumour origin and humoural factors. In conclusion, more research should be devoted to the understanding of muscle wasting mediators, both in cancer and ageing, in particular the identification of common mediators may prove as a good therapeutic strategies for both prevention and treatment of wasting both in disease and during healthy ageing.  相似文献   

4.
Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with specific emphasis on the potential and controversial cross-talk which may exist between anabolic growth factors (e.g. IGF-I) and catabolic cytokines (e.g. TNF-alpha). Also importantly, the potential impact at a cellular level of exercise, diet and age will be addressed. Finally, the ability to 'hi-jack' signalling pathways traditionally believed to be for growth and survival or death will be reviewed. It is anticipated that such a review will highlight significant gaps in our knowledge of the cachectic state as well as provide caution with regards to therapeutics suggesting total block on inflammatory processes such as that associated with TNF-alpha action.  相似文献   

5.
Tumor-host interactions   总被引:4,自引:0,他引:4  
A number of malignant tumors interact with the host to cause a syndrome of cachexia, characterized by extensive loss of adipose tissue and skeletal muscle mass, but with preservation of proteins in visceral tissues. Although anorexia is frequently present, the body composition changes in cancer cachexia cannot be explained by nutritional deprivation alone. Loss of skeletal muscle mass is a result of depression in protein synthesis and an increase in protein degradation. The main degradative pathway that has been found to have increased expression and activity in the skeletal muscle of cachectic patients is the ubiquitin-proteasome proteolytic pathway. Cachexia-inducing tumors produce catabolic factors such as proteolysis-inducing factor (PIF), a 24 kDa sulfated glycoprotein, which inhibit protein synthesis and stimulate degradation of intracellular proteins in skeletal muscle by inducing an increased expression of regulatory components of the ubiquitin-proteasome proteolytic pathway. While the oligosaccharide chains in PIF are required to initiate protein degradation the central polypeptide core may act as a growth and survival factor. Only cachexia-inducing tumors are capable of elaborating fully glycosylated PIF, and the selectivity of production possibly rests with the acquisition of the necessary glycosylating enzymes, rather than expressing the gene for the polypeptide core. Loss of adipose tissue is probably the result of an increase in catabolism rather than a defect in anabolism. A lipid mobilizing factor (LMF), identical with the plasma protein Zn-alpha2-glycoprotein (ZAG) is found in the urine of cachectic cancer patients and is produced by tumors causing a decrease in carcass lipid. LMF causes triglyceride hydrolysis in adipose tissue through a cyclic AMP-mediated process by interaction with a beta3-adrenoreceptor. Thus, by producing circulating factors certain malignant tumors are able to interfere with host metabolism even without metastasis to that particular site.  相似文献   

6.
Tumor necrosis factor (TNF), a pleiotropic cytokine, is produced by macrophages and other cells in a variety of infectious and noninfectious diseases. Ultimately, the net biological effects of TNF may be either beneficial or injurious to the host. For instance, during overwhelming bacterial infection, the acute overproduction of TNF causes septic shock syndrome characterized by hypotension, organ failure, and death. Antibodies against TNF prevent and reverse these sequelae in animal models of septic shock, and their use in humans is currently under investigation in clinical trials. In another instance, TNF has been implicated as an injurious mediator in the state of malnutrition that complicates the course of chronic infection and cancer. Termed cachexia, this chronic syndrome inevitably causes the afflicted host to succumb from weight loss, anorexia, and catabolism of protein and lipid. Experimental studies of animals exposed to TNF for protracted periods indicate that this cytokine is capable of causing cachexia, and the biochemical basis for these catabolic changes has been identified. More recent data indicate that the detrimental metabolic effects of TNF are not dependent upon its circulating levels in the bloodstream, but rather are dependent upon its actions locally in vital organs (e.g., brain). Thus, the metabolic basis for cachexia in infection may be largely dependent upon the amount of cytokine produced in metabolically important tissues. As a result, circulating TNF levels in cachectic patients may not accurately reflect the metabolic state of the host, and do not correlate to weight loss.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cachexia, gluconeogenesis and progressive weight loss in cancer patients   总被引:3,自引:0,他引:3  
Several theories have been proposed to account for the pathogenesis of cachexia in cancer patients. One of these is that the tumor's greater avidity for essential amino acids can result in an amino acid imbalance, which in turn can cause cachexia. In this paper it is shown how, by known biochemical mechanisms, a tumor caused amino acid imbalance can lead to cachexia, progressive weight loss, abnormal gluconeogenesis and lactate recycling. Cachexia leads to a decreased dietary intake, but the cachectic cancer patient, unlike normal man, is unable to adapt. The reason is that the changeover of metabolic fuels from the fed state (glucose) to the starved state (lipids) is hormone regulated, but gluconeogenesis and lactate recycling are substrate regulated. Because of this substrate regulation of gluconeogenesis, the host will be unable to effectively decrease gluconeogenesis as long as the tumor persists in causing an amino acid imbalance.  相似文献   

8.
Dyspnoea is frequently observed in cancer cachectic patients. Little is known whether this is accompanied by structural or functional alterations of the lung. We hypothesized that in analogy to calorie restriction cancer cachexia leads to loss of alveolar surface area and surfactant. Mice were subjected to subcutaneous injection of Lewis lung carcinoma cells (tumour group, TG) or saline (control group, CG). Twenty-one days later blood samples and the lungs were taken. Using design-based stereology, the alveolar surface area and the lamellar body (Lb) content were quantified. Messenger RNA expression of surfactant proteins, ABCA3 and various growth factors was investigated by quantitative RT-PCR. Intraalveolar surfactant subtype composition was analyzed by differential centrifugation. TG mice showed reduced body weight and anaemia but no reduction of lung volume or alveolar surface area. The volume of Lb was significantly reduced and mRNA levels of ABCA3 transporter tended to be lower in TG versus CG. Surfactant protein expression and the ratio between active and inactive intraalveolar surfactant subtypes were not altered in TG. Growth factor mRNA levels were not different between CG and TG lungs but the tumour expressed growth factor mRNA. Vascular endothelial growth factor was significantly enhanced in blood plasma. The present study demonstrates structural alterations of the lung associated with cancer cachexia. These include reduction of Lb content despite normal intraalveolar surfactant and alveolar surface area. The pulmonary phenotype of the cancer cachectic mouse differs from the calorie restricted mouse possibly due to growth factors released from the tumour tissue.  相似文献   

9.
10.
Recent studies have demonstrated the activation of skeletal muscle DNA fragmentation in some catabolic conditions. In an attempt to elucidate if sepsis (a catabolic state) was also associated with muscle apoptosis, sepsis was induced by cecal ligation and puncture, and the results clearly show an induction of DNA fragmentation in gastrocnemius muscle following the induction of the septic state. Administration of rolipram (an inhibitor of tumour necrosis factor-a (TNF-alpha) synthesis) to septic rats clearly prevented the increased DNA fragmentation, suggesting that TNF-alpha is involved in the activation of the apoptotic events in septic rat skeletal muscle.  相似文献   

11.
How does interferon inhibit tumour growth?   总被引:1,自引:0,他引:1  
Interferon can inhibit tumour growth in experimental animals and in some patients with benign and malignant tumours. There is experimental evidence to suggest that several mechanisms may be involved: a direct effect on the tumor or an indirect effect via the host, or both. Thus, interferon may slow the rate of tumour cell multiplication and this may lead to cell death. Interferon may induce changes in the cell surface rendering tumour cells more sensitive to host defence mechanisms. Interferon may induce reversion in the phenotype of tumour cells. Interferon may stimulate specific and non-specific humoral and cellular host mechanisms. The relative importance of these different effects of interferon may vary depending on the host and the particular tumour.  相似文献   

12.
Lipopolysaccharide (LPS)-induced effects on energy balance are characterized by alterations in energy expenditure (hypermetabolism) and food intake (anorexia). To study the role of tumour necrosis factor alpha (TNF-alpha) on some of these metabolic responses to endotoxin, we have used transgenic mice expressing soluble tumour necrosis factor receptor-1 IgG fusion protein (TNFR1-IgG) as well as TNF-alpha knockout (KO), lymphotoxin-alpha (LT-alpha) KO, and interferon-gamma receptor (IFN-gamma R) KO mice. The results from TNFR1-IgG transgenic mice suggest that the hypermetabolic and anorectic responses induced by LPS are independently regulated since, in the absence of TNF-alpha or LT-alpha, the LPS-induced hypermetabolism is almost prevented but not the anorexia. The anorectic response shows the strongest association with IFN-gamma since both IFN-gamma R KO mice and mice treated with anti-IFN-gamma antibody showed marked reduction in the LPS-induced anorexia compared to other mice. IFN-gamma R KO mice also have an attenuated thermogenic response to endotoxin. Anti-Asialo GM1 antibody treatment attenuated both the hypermetabolic and anorectic responses to LPS, to an extent comparable to that observed in IFN-gamma R KO mice. This finding suggests that natural killer cells (lymphocytic subsets) may be involved in IFN-gamma production and play an important role in the metabolic alterations induced by LPS. We also showed that the hypermetabolic response of control mice is associated with an upregulation of cytokine expression within the brain and an increase in permeability of the blood brain barrier. LPS-induced anorexia appears to involve peripheral cytokine expression.  相似文献   

13.
Many diseases are associated with catabolic conditions that induce skeletal muscle wasting. These various catabolic states may have similar and distinct mechanisms for inducing muscle protein loss. Mechanisms related to muscle wasting may also be related to muscle metabolism since glycolytic muscle fibers have greater wasting susceptibility with several diseases. The purpose of this study was to determine the relationship between muscle oxidative capacity and muscle mass loss in red and white hindlimb muscles during cancer cachexia development in the Apc(Min/+) mouse. Gastrocnemius and soleus muscles were excised from Apc(Min/+) mice at 20 wk of age. The gastrocnemius muscle was partitioned into red and white portions. Body mass (-20%), gastrocnemius muscle mass (-41%), soleus muscle mass (-34%), and epididymal fat pad (-100%) were significantly reduced in severely cachectic mice (n = 8) compared with mildly cachectic mice (n = 6). Circulating IL-6 was fivefold higher in severely cachectic mice. Cachexia significantly reduced the mitochondrial DNA-to-nuclear DNA ratio in both red and white portions of the gastrocnemius. Cytochrome c and cytochrome-c oxidase complex subunit IV (Cox IV) protein were reduced in all three muscles with severe cachexia. Changes in muscle oxidative capacity were not associated with altered myosin heavy chain expression. PGC-1α expression was suppressed by cachexia in the red and white gastrocnemius and soleus muscles. Cachexia reduced Mfn1 and Mfn2 mRNA expression and markers of oxidative stress, while Fis1 mRNA was increased by cachexia in all muscle types. Muscle oxidative capacity, mitochondria dynamics, and markers of oxidative stress are reduced in both oxidative and glycolytic muscle with severe wasting that is associated with increased circulating IL-6 levels.  相似文献   

14.
Tumour inhibition by interleukin-2 at the tumour/host interface   总被引:2,自引:0,他引:2  
Until recently, lymphokines were regarded suspiciously as 'ill-defined factors'. Today, however, some of them have been clearly defined in both structural and functional terms. The interleukin-2 (IL-2) molecule and its specific membrane receptors have been the subject of particular attention. Endogenous IL-2 has proved to be an important signal for the activation and expansion of various cell-mediated immunity functions, while exogenous IL-2 has been used to activate numerous cell functions, both in vitro and in vivo, as well as in tumour immunotherapy, both alone or combined with lymphocytes previously activated in vitro (lymphokine-activated killer cells). Adoptive transfer of these cells together with high doses of IL-2 is particularly promising from the clinical standpoint, though by no means free from problems. IL-2 can also be employed in small doses locally in the presence of non-activated lymphocytes from tumour bearing mice to induce a local reaction that subsequently becomes systemic and can lead to the rejection of incipient tumours. Various host immune cells, primarily eosinophils and lymphocytes are involved in this reaction, which can also give rise to tumour-specific immune memory. In this way, the host immune system, despite its inevitable defeat in the first battle against a tumour, may acquire an important role in the long war that lies ahead.  相似文献   

15.
The aim of the present study was to investigate a possible role of the AP-1 signaling cascade in the process of wasting associated with cancer cachexia at the level of skeletal muscle. The injection of virus containing the TAM67 protein (a blocker of the AP-1 protein) to the gastrocnemius muscle of tumour-bearing rats resulted in a significant recovery of the muscle mass (which is dramatically reduced as a result of tumour burden), therefore suggesting that AP-1 is certainly involved in the signaling associated with muscle protein accretion. In conclusion, the gene therapy approach presented here clearly suggests an important role for AP-1 in muscle signaling during catabolic states.  相似文献   

16.
A mathematical model of residual stress evolution in a growing vascular tumour is presented, in an attempt to elucidate the poorly understood phenomenon of vascular collapse. Whereas earlier studies in this area have neglected the effects of mechanical interactions between the tumour and the surrounding host tissue, the significance of these interactions for the long-term development of a tumour is now considered. The model predicts tumour stress distributions which reflect the distinctive patterns of vascular collapse reported in experimental studies. Moreover, while neglecting mechanical host/tumour interactions results in the eventual complete regression of the tumour to its avascular dormant size in the event of vascular collapse, this new model points to the possibility of oscillations in the tumour's size in the long term.  相似文献   

17.

Background

Among psychiatric disorders, anorexia nervosa has the highest mortality rate. During an exacerbation of this illness, patients frequently present with nonspecific symptoms. Upon hospitalization, anorexia nervosa patients are often markedly bradycardic, which may be an adaptive response to progressive weight loss and negative energy balance. When anorexia nervosa patients manifest tachycardia, even heart rates in the 80–90 bpm range, a supervening acute illness should be suspected.

Case presentation

A 52-year old woman with longstanding anorexia nervosa was hospitalized due to progressive leg pain, weakness, and fatigue accompanied by marked weight loss. On physical examination she was cachectic but in no apparent distress. She had fine lanugo-type hair over her face and arms with an erythematous rash noted on her palms and left lower extremity. Her blood pressure was 96/50 mm Hg and resting heart rate was 106 bpm though she appeared euvolemic. Laboratory tests revealed anemia, mild leukocytosis, and hypoalbuminemia. She was initially treated with enteral feedings for an exacerbation of anorexia nervosa, but increasing leukocytosis without fever and worsening left leg pain prompted the diagnosis of an indolent left lower extremity cellulitis. With antibiotic therapy her heart rate decreased to 45 bpm despite minimal restoration of body weight.

Conclusions

Bradycardia is a characteristic feature of anorexia nervosa particularly with significant weight loss. When anorexia nervosa patients present with nonspecific symptoms, resting tachycardia should prompt a search for potentially life-threatening conditions.  相似文献   

18.
Increase in methylglyoxal is thought to be involved in different pathological conditions. Deamination of aminoacetone by semicarbazide-sensitive amine oxidase (SSAO) leads to production of methylglyoxal. We have synthesized aminoacetone and developed a novel HPLC procedure for its quantitative determination. The urinary excretion of aminoacetone is approximately 20-30 microg/mouse/day, and the concentration is about 0.5 microg/g in mouse liver and small intestine. SSAO inhibitor increases aminoacetone levels in both tissues and urines. Results confirm that aminoacetone is an endogenous substrate for SSAO. However, data also indicate that deamination is not the only catabolic pathway for aminoacetone.  相似文献   

19.
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.  相似文献   

20.
Melanocortin receptors are considered promising candidates for the treatment of behavioral and metabolic disorders ranging from obesity to anorexia and cachexia. These experiments examined the response of mice to peripheral injections of two compounds. PG932 is a derivative of SHU9119 which is non-selective antagonist of melanocortin-3 and melanocortin-4 receptors (Mc3r and Mc4r). PG946 is a derivative of a hybrid of alpha- and beta-MSH, and is a moderately selective Mc3r antagonist. SHU9119 increases food intake when administered intracerebroventricularly but is without effect when injected into the periphery. In contrast, PG932 was found to be highly effective at stimulating food intake when administered peripherally by intraperitoneal injection. The orexigenic effect of PG932 required functional Mc4r, suggesting that inhibition of this receptor is involved in the stimulation of food intake. PG946 did not significantly affect on feeding behavior. PG932 is thus a useful new compound for studies examining the regulation of appetite and energy balance, and may also prove useful for the treatment of cachectic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号