首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.  相似文献   

4.
A portion of the 5S ribosomal RNA (rRNA) structure space in the vicinity of the Vibrio proteolyticus 5S rRNA sequence is explored in detail with the intention of establishing principles that will allow a priori prediction of which sequences would be valid members of a particular RNA structure space. Four hundred and one sequence variants differing from the V. proteolyticus 5S rRNA wild-type sequence in 1-7 positions were characterized using an in vivo assay system. Most significantly, it was found that in general, the phenotypic effects of single changes were independent of the phenotypic effect of a second change. As a result, it was possible to use the new data in conjunction with results from prior studies of the same RNA to develop "truth tables" to predict which multiple change variants would be functional and which would be nonfunctional. The actual phenotype of 93.8% of the multichange variants studied was consistent with the predictions made using truth tables thereby providing for perhaps the first time an upper limit estimate of how frequent unexpected interactions are. It was also observed that single changes at positions involved in secondary structure were no more likely to be invalid than changes in other regions. In particular, internal changes in long standard stems were in fact almost always tolerated. Changes at positions that were hypervariable in the context of an alignment of related sequences were, as expected, usually found to be valid. However, the potential validity of changes that were idiosyncratic to a single lineage of related sequences when placed in the V. proteolyticus 5S rRNA context was unpredictable.  相似文献   

5.
Comparative sequence analysis addresses the problem of RNA folding and RNA structural diversity, and is responsible for determining the folding of many RNA molecules, including 5S, 16S, and 23S rRNAs, tRNA, RNAse P RNA, and Group I and II introns. Initially this method was utilized to fold these sequences into their secondary structures. More recently, this method has revealed numerous tertiary correlations, elucidating novel RNA structural motifs, several of which have been experimentally tested and verified, substantiating the general application of this approach. As successful as the comparative methods have been in elucidating higher-order structure, it is clear that additional structure constraints remain to be found. Deciphering such constraints requires more sensitive and rigorous protocols, in addition to RNA sequence datasets that contain additional phylogenetic diversity and an overall increase in the number of sequences. Various RNA databases, including the tRNA and rRNA sequence datasets, continue to grow in number as well as diversity. Described herein is the development of more rigorous comparative analysis protocols. Our initial development and applications on different RNA datasets have been very encouraging. Such analyses on tRNA, 16S and 23S rRNA are substantiating previously proposed associations and are now beginning to reveal additional constraints on these molecules. A subset of these involve several positions that correlate simultaneously with one another, implying units larger than a basepair can be under a phylogenetic constraint.  相似文献   

6.
7.
During electrophoresis in polyacrylamide gels containing 7M urea the major discrete components of preparations of rat liver mitochondrial poly(A)+ and poly(A)- RNA species have similar mobilities. Poly(A)- RNA components hybridize to the 16S rRNA gene of mtDNA. Analysis of 5'-terminal sequences of these components revealed their identity to the 5'-terminal sequence of 16S rRNA. These results show that poly(A)- RNA components are fragmentation products of 16S rRNA. Fragmentation occurs nonrandomly from the 3'-end of the original rRNA molecules and lead to formation of products with electrophoretic mobilities similar to those of poly(A)+ RNA components.  相似文献   

8.
J J Hogan  R R Gutell  H F Noller 《Biochemistry》1984,23(14):3330-3335
The conformation and accessibility of 26S rRNA in yeast 60S ribosomal subunits were probed with kethoxal. Oligonucleotides originating from reactive sites were isolated by diagonal electrophoresis and sequenced. From over 70 oligonucleotide sequences, 26 kethoxal-reactive sites could be placed in the 26S rRNA sequence. These are in close agreement with a proposed secondary structure model for the RNA that is based on comparative sequence analysis. At least seven kethoxal-reactive sites in yeast 26S rRNA are in positions that are exactly homologous to reactive positions in E. coli 23S rRNA; each of these sites has previously been implicated in some aspect of ribosomal function.  相似文献   

9.
K Zahn  M Inui    H Yukawa 《Nucleic acids research》1999,27(21):4241-4250
We demonstrate the presence of a separate processed domain derived from the 5' end of 23S rRNA in ribosomes of Rhodopseudomonas palustris, a member of the alpha-++proteobacteria. Previous sequencing studies predicted intervening sequences (IVS) at homologous positions within the 23S rRNA genes of several alpha-proteobacteria, including R.palustris, and we find a processed 23S rRNA 5' domain in unfractionated RNA from several species. 5.8S rRNA from eukaryotic cytoplasmic large subunit ribosomes and the bacterial processed 23S rRNA 5' domain share homology, possess similar structures and are both derived by processing of large precursors. However, the internal transcribed spacer regions or IVSs separating them from the main large subunit rRNAs are evolutionarily unrelated. Consistent with the difference in sequence, we find that the site and mechanism of IVS processing also differs. Rhodopseudomonas palustris IVS-containing RNA precursors are cleaved in vitro by Escherichia coli RNase III or a similar activity present in R.palustris extracts at a processing site distinct from that found in eukaryotic systems and this results in only partial processing of the IVS. Surprisingly, in a reaction unlike characterized cases of eubacterial IVS processing, an RNA segment larger than the corresponding DNA insertion is removed which contains conserved sequences. These sequences, by analogy, serve to link the 23S rRNA 5' rRNA domains or 5.8S rRNAs to the main portion of other prokaryotic 23S rRNAs or to eukaryotic 28S rRNAs, respectively.  相似文献   

10.
11.
The 5'-termini of purified rat liver nucleolar and cytoplasmic 28S ribosomal RNA (rRNA) are precisely located within the homologous rDNA sequence by S1 nuclease protection mapping using an appropriate rDNA restriction fragment. The 5'-termini of nucleolar 28S rRNA are heterogeneous in length. The bulk of the nucleolar 28S rRNA map within two CTC motifs in rDNA located in the internal transcribed spacer 2 at the 50-60 and 5-15 bp upstream from the site of the homogeneous 5'-terminus of the cytoplasmic 28S rRNA. These results provide direct proof that nucleolar 28S rRNA molecules contain excess sequences at their 5'-termini and require further processing to generate the mature cytoplasmic 28S rRNA.  相似文献   

12.
13.
Rainbow trout cell cultures have been exposed to 32P-labelled inorganic phosphate and the labelled RNA has been isolated. The 5S ribosomal ribonucleic acid (5S rRNA) was purified by polyacrylamide gel electrophoresis, then digested with RNase T1 or pancreatic RNase. The products of complete digestion were separated and their sequences determined. These analyses have allowed a sequence to be proposed which differs in eight positions from that of mammalian 5S rRNAs.  相似文献   

14.
All functional RNAs are generated from precursor molecules by a plethora of processing steps. The generation of mature RNA molecules by processing is an important layer of gene expression regulation catalysed by ribonucleases. Here, we analysed 5S rRNA processing in the halophilic Archaeon Haloferax volcanii. Earlier experiments showed that the 5S rRNA is cleaved at its 5' end by the endonuclease tRNase Z. Interestingly, a tRNA-like structure was identified upstream of the 5S rRNA that might be used as a processing signal. Here, we show that this tRNA-like element is indeed recognised as a processing signal by tRNase Z. Substrates containing mutations in the tRNA-like sequence are no longer processed, whereas a substrate containing a deletion in the 5S rRNA sequence is still cleaved. Therefore, an intact 5S rRNA structure is not required for processing. Further, we used bioinformatics analyses to identify additional sequences in Haloferax containing tRNA-like structures. This search resulted in the identification of all tRNAs, the tRNA-like structure upstream of the 5S RNA and 47 new tRNA-like structural elements. However, the in vitro processing of selected examples showed no cleavage of these newly identified elements. Thus, tRNA-like elements are not a general processing signal in Haloferax.  相似文献   

15.
23S rRNA gene from the halophilic archaeon Haloferax mediterranei (strain ATCC 33500) was cloned and sequenced. Proceeding from the 2,912 nucleotides long sequence, the secondary structure of Haloferax genus large subunit rRNA was proposed. Haloferax mediterranei intergenic spacers 16S/23S and 23S/5S were also sequenced, and found to be 382 and 116 nucleotides long respectively. The 16S/23S spacer showed an Ala-tRNA intervening sequence, which is a common feature in Euryarchaeota. Sequence analysis of 23S rRNA and 16S rRNA was performed for the six organisms from the family Halobacteriaceae with both available gene sequences. Phylogenetic trees with completely different topology were obtained using both molecules.  相似文献   

16.
17.
Sequences of the polynucleotide chains of RNA found in the large and small ribosomal subunits of rabbit reticulocytes have been determined from the 3'-end by use of periodate oxidation and condensation with [(3)H]isoniazid and by stepwise degradation. By these methods the hexanucleotide sequences have been found as -pGpUpUpUpGpU for the 28S RNA and -pGpUpCpGpCpU for the 6S RNA of the large ribosomal subunit and the octanucleotide sequence -pGpApUpCpApUpUpA for the 18S rRNA of the small ribosomal subunit. These sequences are present in at least 70% of all the RNA molecules and are discussed in relation to the specific cleavage of rRNA from its precursors and the role of multiple cistrons for rRNA in the DNA of higher organisms. The feasibility of using the method for longer sequence determinations is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号