首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We report the characteristics of the interaction between reconstituted microtubules and purified thyroid lysosomes. Microtubules were extracted from pig brain by temperature-dependent assembly-disassembly and labelled with 125I by conjugation with the Bolton-Hunter reagent. Thyroid lysosomes were purified from pig thyroid by isopycnic centrifugation on Percoll gradients. The formation of microtubule-lysosome complexes has been studied by electron microscopy, using negative staining, and by differential centrifugation. The association of lysosomes to microtubules is time- and temperature-dependent (between 25 degrees C and 37 degrees C). The rate of microtubule-lysosome complex formation is related to the concentration of lysosomes. The higher the lysosome concentration is, the higher also is the rate of the interaction. Changes in microtubule concentration merely alter the amount of complex formed; there is a linear relationship between the amount of complexes and the microtubule concentration. However, lysosomes seem to possess a limited number of 'microtubule-binding sites', since a saturation of the complex formation can be obtained at high microtubule concentration. Two main types of complex have been observed by electron microscopy on negatively stained samples; simple complexes composed of a lysosome in close contact with a microtubule and complexes formed by a lysosome surrounded by several microtubules. The formation of microtubule-lysosome complexes was totally inhibited in the presence of 100 microM N-ethylmaleimide; the rate of the interaction was slightly increased in the presence of dithiothreitol (25-100 microM). The interaction we describe here in an acellular system might be relevant to the association of lysosomes to microtubules observed in intact cells (Collot, M., Louvard D. and Singer S.J. (1984) Proc. Natl. Acad. Sci. USA 81, 788-792) and will constitute a useful model to study the regulation mechanisms of microtubule-vesicle interaction.  相似文献   

2.
R L Margolis  C T Rauch  F Pirollet    D Job 《The EMBO journal》1990,9(12):4095-4102
STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.  相似文献   

3.
4.
Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.  相似文献   

5.
Membrane vesicles were isolated from purified liver lysosomes of rats treated with Triton WR-1339. In order to preserve ATP-dependent acidification activity, proteolysis of membranes was minimized by adding protease inhibitors and by centrifuging to form dilute bands of vesicles rather than highly concentrated pellets. The membrane vesicle fraction represented about 20% of the total lysosomal protein, 80% of the ATPase activity, and 3% of the solute proteins as marked by N-acetylglucosaminidase. About one-half of the membranes were oriented right side out. The space unavailable to [14C]sucrose corresponded to 3 microliters/mg of membrane protein which indicates that the membranes form vesicles about one-tenth the size of lysosomes. Uptake of either [14C]methylamine or [14C]chloroquine by lysosomal membrane vesicles was ATP-dependent, indicating acidification of the intravesicle space. The acidification activity was inhibited when either 1.5 microM carbonyl cyanide p-trifluoromethoxy-phenylhydrazone, 100 microM dicyclohexylcarbodiimide, or millimolar concentrations of such permeant weak bases as ammonium sulfate and dansyl cadaverine were added. Acidification of lysosomal vesicles by ATP occurred electroneutrally. This acidification activity was not dependent on added salts but was inhibited by the anion transport inhibitors pyridoxal phosphate and diisothiocyanostilbene disulfonic acid, thus suggesting co-transport of protons and anions. Results which indicate that phosphate is the transported anion included (a) ATP-dependent uptake of [32P]phosphate by lysosomal membrane vesicles and (b) stimulation of ATP-dependent acidification of these vesicles by added phosphate. These observations provide further evidence that maintenance of the acid intralysosomal pH necessary for activation of lysosomal hydrolases is due to an ATP-driven proton pump located in the lysosomal membrane.  相似文献   

6.
Summary Cytoplasmic streaming in the freshwater, coencytic green alga,Dichotomosiphon tuberosus, is regulated by light. Conspicuous changes are observed in the number of microtubules cross-linked together in bundles when the cytoplasmic streaming is modulated by light. In an attempt to identify the cross-linker, we stainedD. tuberosus cells with antibodies specific for several different microtubules-associated proteins (MAPs) from vertebrates. Antibodies raised against bovine adrenal 190 kDa MAP stained the algal cells, and the pattern of staining was quite similar to that obtained with tubulin-specific antibodies. Examination by immunoelectron microscopy revealed that the antibodies specific for the 190 kDa microtubule-associated protein (MAP) were located along the microtubules. Western blotting demonstrated that the antibodies crossreacted with a peptide fromD. tuberosus with a molecular weight of about 90 kDa. This peptide was heat-stable, a property shared by the bovine 190 kDa MAP. Moreover, this 90 kDa peptide, crossreacted with antibodies raised against a synthetic peptide, identical to the tubulin-binding domain found in the 190 kDa MAP and in a tau protein. Partially purified 90 kDa protein fromD. tuberosus has the ability to bundle microtubules when mixed with a tubulin fraction fromD. tuberosus, in the presence of taxol. These results suggest that the 90 kDa protein fromD. tuberosus is a MAP that bundles microtubules.Abbreviations APMSF (p-amidinophenyl) methanesulfonyl fluoride - BSA bovine serum albumin - CBB Coomassie Brilliant Blue R - DEAE diethylaminoethyl - DMSO dimethyl sulfoxide - DOC deoxycholic acid - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MAP microtubule-associated protein - MES 2[N-morpholino] ethanesulfonic acid - PBS phosphate-buffered saline - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - TLCK N-p-tosyl-lysine chloromethyl ketone  相似文献   

7.
R D Vale 《Cell》1991,64(4):827-839
Eukaryotic cells disassemble and reorganize their cytoskeleton during the cell cycle and in response to environmental cues. Disassembly of the actin cytoskeleton is aided by proteins that sever filamentous actin, but microtubule-severing proteins thus far have not been identified. Here, we describe an activity in extracts from Xenopus eggs that rapidly severs stable microtubules along their length. Severing is elicited by a protein(s) whose activity is greatly stimulated during mitosis through a posttranslational mechanism. The microtubule-severing factor may be involved in disassembling the interphase microtubule network prior to constructing the mitotic spindle.  相似文献   

8.
The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites.  相似文献   

9.
We previously investigated the biochemical characteristics of microtubule-associated proteins (MAPs) of the adrenal medulla and adrenal cortex and found that they contain a new kind of MAP with a molecular weight of 190,000 (190 kD MAP) as a major species (Kotani, S., H. Murofushi, S. Maekawa, C. Sato, and H. Sakai. Eur. J. Biochem. 156, 23-29, 1986). We now have used an affinity purified anti-(190 kD MAP) antibody and show by indirect immunofluorescent microscopy the association of this MAP with microtubules in situ in TIG-3 cells (human embryonic lung fibroblasts). The 190 kD MAP was present along the interphase and mitotic microtubules, and there was no marked difference between the staining pattern with anti-tubulin and that with anti-(190 kD MAP) antibodies, evidence that the localization of 190 kD MAP is not restricted to the subset of microtubules. We also isolated MAPs from TIG-3 cells and identified their 190 kD MAP as a major heat-stable component. Several other unidentified polypeptides were recovered in the MAP fraction specifically.  相似文献   

10.
The pathways involved in targeting membrane proteins to lysosomes are extraordinarily complex. Newly synthesized proteins in the ER are transported to the Golgi complex, and upon arrival at the trans Golgi network (TGN) are targeted either directly to endosomes, or first to the cell surface from where they can be rapidly internalized into the endocytic pathway for delivery to lysosomes. The routes to endosomes are specified by sorting motifs in the cytoplasmic tails of the proteins that are recognized at the TGN or plasma membrane. The molecular details of these processes are just emerging.  相似文献   

11.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

12.
Nitrocellulose blots of bovine kidney membrane proteins were prepared from denaturing polyacrylamide gels. Strips of the blots were incubated with parathyroid hormone (PTH), washed, and then incubated with antisera against the hormone. Exposure to horseradish peroxidase-linked second antibody led to staining of a 51-kDa protein. No staining was observed in blots not incubated with PTH. Fragments 35-84 and 19-84 of PTH reacted strongly with the antisera, but did not lead to staining of the 51-kDa protein on the blots. Staining was visible, but greatly reduced, when fragment 9-84 was used. Oxidation of the native hormone at positions 8 and 18 led to reductions in staining of the band which were quantitatively similar to the reductions in biological activity induced by such oxidations. These properties suggested that the 51-kDa protein recognizes the amino-terminal portions of PTH, which is the segment of the molecule required for its biological activities. Several micrograms of the 51-kDa protein were purified to homogeneity by selective extraction from the membranes with detergent and by elution from multiple two-dimensional gels. The purified protein retained its PTH-dependent staining and specificity. This protein may be a PTH receptor or a fragment of a PTH receptor from kidney.  相似文献   

13.
The heterotrimeric GTP-binding regulatory proteins (G proteins) play an important role in the regulation of membrane signal transduction. Recently, we identified the association of Go protein with mitotic spindles. Here we have investigated the relationship between Go protein and microtubules. We used temperature-dependent reversible assembly and taxol methods to purify microtubules from bovine brains. Goalpha and Gbeta proteins were identified in the microtubular fraction by both methods. The Goalpha subunit in the microtubular fraction could be ADP ribosylated by pertussis toxin. Co-immunoprecipitation data also revealed that Go protein can interact with microtubules. Exogenous Go protein could be incorporated into the assembled microtubular fraction, and 5 microg/ml (60 nM) of Go protein inhibited 40% of microtubule assembly. Western blot analysis of Goalpha-1 and Goalpha-2 in microtubular fractions showed that only Goalpha-1 is associated with microtubules. We conclude that the Goalpha-1betagamma proteins are associated with microtubules and may play some role in regulating the assembly and disassembly of microtubules.  相似文献   

14.
Gao J  Xia L  Lu M  Zhang B  Chen Y  Xu R  Wang L 《Molecular biology reports》2012,39(9):8883-8889
In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.  相似文献   

15.
MARK/Par-1 is a kinase involved in development of embryonic polarity. In neurons, MARK phosphorylates tau protein and causes its detachment from microtubules, the tracks of axonal transport. Because the target sites of MARK on tau occur at an early stage of Alzheimer neurodegeneration, we searched for interaction partners of MARK. Here we report that MARK2 is negatively regulated by PAK5, a neuronal member of the p21-activated kinase family. PAK5 suppresses the activity of MARK2 toward its target, tau protein. The inhibition requires the binding between the PAK5 and MARK2 catalytic domains, but does not require phosphorylation. In transfected Chinese hamster ovary (CHO) cells both kinases show a vesicular distribution with partial colocalization on endosomes containing AP-1/2. Although MARK2 transfected alone destabilizes microtubules and stabilizes actin stress fibers, PAK5 keeps microtubules stable through the down-regulation of MARK2 but destabilizes the F-actin network so that stress fibers and focal adhesions disappear and cells develop filopodia. The results point to an inverse relationship between actin- and microtubule-related signaling by the PAK5 and MARK2 pathways that affect both cytoskeletal networks.  相似文献   

16.
Colchicine was administered intraperitoneally to rats in doses which are known to inhibit the basal migration of lysosomes in uterine epithelial cells. The fractional volume of microtubules in the cells was then measured by morphometry. Colchicine at 0.10 mg/kg reduced the microtubule content of the cells from 0.22% down to 0.15%, and 1.0 mg/kg reduced microtubule content to 0.03%. Microtubules were essentially absent from the cells after colchicine doses of 3.0 and 10.0 mg/kg. The microtubule content of uterine epithelial cells thus decreased in the colchicine dose range from about 0.10 to 1.0 mg/kg, the same dose range in which an inhibition of lysosome migration has been observed. These results support the suggestion that microtubules are necessary for the basal migration of lysosomes in uterine epithelial cells. In addition, colchicine at 1.0 mg/kg caused a redistribution of the Golgi complex and a class of electron-transparent, 130 to 450 nm vesicles. These organelles were restricted to the apical halves of the cells in untreated rats, but they were dispersed throughout the cells after drug treatment. The change in the position of the organelles may be caused by a loss of cytoskeletal function of the microtubules.  相似文献   

17.
甘蔗渣是一种制糖工业废料,主要含有丰富的纤维素类物质,纤维素类物质由五碳糖和六碳糖组成,通过粉碎,用1%NaOH碱预处理24h,在121℃、pH1.0的条件下水解1h,不同的酵母利用水解液发酵生产酒精的研究结果表明:假丝酵母1779能高效地利用水解液中的葡萄糖、木糖,转化生产酒精,发酵48h,测得发酵液中的酒精含量达0.978g/100mL,折合成干物质转化率为13.04%。  相似文献   

18.
Liu XF  Xie X  Miki T 《Cellular signalling》2006,18(12):2314-2323
The attachment of spindle microtubules to kinetochores is crucial for accurate segregation of chromosomes to daughter cells during mitosis. While a growing number of proteins involving this step are being identified, its molecular mechanisms are still not clear. Here we show that protein kinase C ζ (PKCζ) is localized at the mitotic spindle during mitosis and plays a role in stable kinetochore-microtubule attachment. Striking staining for PKCζ was observed at the mitotic spindle and spindle poles in cells at prometaphase and metaphase. PKCζ molecules at these stages were phosphorylated at Thr-410, as detected by a phosphospecific antibody. PKCζ was also detected at the spindle midzone and the midbody during anaphase and telophase, respectively, and PKCζ at these stages was no longer phosphorylated at Thr-410. The polarity determinants Par3 and Par6, which are known to associate with PKCζ, were also localized to the spindles and spindle poles at prometaphase and metaphase. Knockdown of PKCζ by RNA interference affected normal chromosome alignment leading to generation of cells with aberrant nuclei. A specific PKCζ inhibitor strongly blocked the formation of cold-sensitive stable kinetochore microtubules, and thus prevented microtubule-kinetochore attachment. Treatment of cells with the PKCζ inhibitor also dislocated the minus-end directed motor protein dynein from kinetochores, but not the mitotic checkpoint proteins Mad2 and CENP-E. Prolonged exposure to the PKCζ inhibitor eventually resulted in cell death. These results suggest a critical role of PKCζ in spindle microtubule-kinetochore attachment and subsequent chromosomal separation.  相似文献   

19.
Activation of heterotrimeric GTP-binding (G) proteins by their coupled receptors, causes dissociation of the G protein alpha and betagamma subunits. Gbetagamma subunits interact directly with G protein-gated inwardly rectifying K+ (GIRK) channels to stimulate their activity. In addition, free Gbetagamma subunits, resulting from agonist-independent dissociation of G protein subunits, can account for a major component of the basal channel activity. Using a series of chimeric constructs between GIRK4 and a Gbetagamma-insensitive K+ channel, IRK1, we have identified a critical site of interaction of GIRK with Gbetagamma. Mutation of Leu339 to Glu within this site impaired agonist-induced sensitivity and decreased binding to Gbetagamma, without removing the Gbetagamma contribution to basal currents. Mutation of the corresponding residue in GIRK1 (Leu333) resulted in a similar phenotype. Both the GIRK1 and GIRK4 subunits contributed equally to the agonist-induced sensitivity of the heteromultimeric channel. Thus, we have identified a channel site that interacts specifically with Gbetagamma subunits released through receptor stimulation.  相似文献   

20.
Monoclonal antibodies have been produced against primary bone cells obtained from the collagenase digestion of mouse cranial bone. Antibodies were selected on the basis of their immunoglobulin class and those which were identified as IgG were further screened for their ability to inhibit cAMP accumulation in response to sub-maximal doses of the 1-34 amino-terminal peptide of bovine parathyroid hormone, bPTH(1-34). Nine hybridoma clones were subsequently characterized as inhibitory with respect to parathyroid hormone (PTH) responses in intact mouse cranial bone and which also identified a variety of membrane components from detergent extracts of surface-labeled primary bone cells. Five of these antibodies immunoprecipitated a membrane component with Mr of 80 000 that appeared to be a major component of the extract susceptible to surface-labeling with 125I. All nine monoclonal antibodies were shown to bind to a suspended-cell preparation of primary bone cells with 2-3 orders of magnitude greater binding than that of control antibodies. Using this assay, one clone, designated 3G12 IgG, was observed to exhibit desensitization effects at the binding level with a time course and dose dependency for PTH pre-incubation that was similar to the establishment of the refractory state in other systems. In addition, the desensitization effect occurred at 37 degrees C but not at 4 degrees C. This antibody was shown to bind saturably to both intact mouse cranial bone and primary bone cells with an apparent affinity constant (Ka) in the range of 10(9) M. Inhibition of bone cAMP accumulation in response to 2.5 nM bPTH(1-34) was directly correlated to the binding of 3G12 IgG to intact mouse calvariae. A maximum inhibition of approximately 85% was observed. 3G12 IgG immunoprecipitated a single membrane component, Mr 150 000, from NP-40 detergent extracts of 125I-labeled primary mouse bone cells. The molecular mass of this component was also 150 000 daltons when run on polyacrylamide gel slabs under non-reducing conditions. Control and PTH-pre-treated bone cells were surface-labeled, detergent-solubilized and immunoprecipitated with 3G12 IgG in order to investigate further the desensitization effect at the molecular level. Incubation of bone cells with 1 microgram/ml bPTH(1-34) for 45 min at 37 degrees C caused an increased susceptibility to surface-labeling with 125I that was approximately three-fold higher in specific activity than that of control cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号