首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
DNA damage was assessed in smoker lymphocytes by subjecting them to the single cell gel electrophoresis (SCGE) assay. In addition to the appearance of comet tails, smoker cells exhibited enlarged nuclei when analysed by the comet assay. On comparing basal DNA damage among smokers and a non-smoking control group, smoker lymphocytes showed higher basal DNA damage (smokers, 36.25+/-8.45 microm; non-smokers, 21.6+/-2.06 microm). A significant difference in DNA migration lengths was observed between the two groups at 10 min after UV exposure (smokers, 65.5+/-20.34 microm; non-smokers, 79.2+/-11.59 microm), but no significant differences were seen at 30 min after UV exposure (smokers, 21.13+/-10.73 microm; non-smokers, (27.2+/-4.13 microm). The study thus implies that cigarette smoking perhaps interferes with the incision steps of the nucleotide excision repair (NER) process. There appeared be no correlation between the frequency of smoking and DNA damage or the capacity of the cells to repair UV-induced DNA damage that suggests inherited host factors may be responsible for the inter-individual differences in DNA repair capacities. The study also suggests monitoring NER following UV insult using the SCGE assay is a sensitive and simple method to assess DNA damage and integrity of DNA repair in human cells exposed to chemical mutagens.  相似文献   

2.
The influence of occupational exposure to environmental carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) on DNA damage detected in lymphocytes of exposed people (city policemen) was studied. The cellular susceptibility to the induction of the DNA damage and the repair capacity of exposed donors are presented in comparison with matched controls. Monitoring was performed and blood samples (164 donors) were collected in Prague, Czech Republic, during the winter and summer seasons. The single-cell gel electrophoresis (SCGE) assay with an internal standard was applied to evaluate the DNA damage. A challenging dose of 2 Gy of X-rays was used to study cellular capacities. In the results of studies of the DNA damage induced in vivo or as an immediate response to the challenging treatment no significant difference was found between exposed and unexposed subgroups. The percentage of non-repaired X-ray-induced DNA damage (residual damage, RD) overall in both seasons was significantly higher in lymphocytes of policemen exposed to c-PAHs than in matched controls (RDT-DNA, %DNA in the comet tail: winter 36.4 ± 22.1 versus 22.7 ± 10.8, p < 0.001; summer 47.7 ± 22.9 versus 34.7 ± 15.2, p < 0.001). The results suggest that occupational exposure to environmental c-PAHs significantly reduces the cellular capacity to repair the DNA damage induced by a challenging treatment. A significant decrease of repair efficiency in donors occupationally exposed to environmental c-PAHs was also observed when subgroups were stratified according to smoking history. In conclusion, our results suggest that environmental exposure to c-PAHs affects the cellular repair processes and can lead to harmful effects hazardous to human health.  相似文献   

3.
DNA断裂检测方法──单细胞凝胶电泳法   总被引:25,自引:2,他引:23  
单细胞凝胶电泳(single cell gel electrophoresis assay,SCGE)也叫彗星试验(comet assay),是一种快速、敏感、简便、廉价的检测单个哺乳动物细胞DNA断裂的技术,目前已用于检测氧化、紫外线和电离辐射引起的损伤,以及三氯乙烷、丙烯酰胺等化学物及老化、吸烟所致损害的研究.文章介绍SCGE的发展、检测分析方法、原理及其在DNA损伤与修复、生物监测、遗传毒理研究、肿瘤治疗方案优化和疗效研究方面的应用前景.  相似文献   

4.
The Comet assay, a sensitive, rapid and non-invasive technique, measures DNA damage in individual cells and has found wide acceptance in epidemiological and biomonitoring studies to determine the DNA damage resulting from lifestyle, occupational and environmental exposure. The present study was undertaken to measure the basal level of DNA damage in a normal, healthy Indian male and female population. Out of the 230 volunteers included in this study, 124 were male and 106 were female. All the individuals belonged to a comparable socio-economic background and aged between 20 and 30 years. They were also matched for their smoking and dietary habits. The period of sample collection was also matched. The results revealed a statistically significant higher level of DNA damage in males when compared to females as evident by an increase in the Olive tail moment [3.76±1.21 (arbitrary units) for males as compared to 3.37±1.47 for females (P<0.05)], tail DNA (%) [10.2±2.96 for males as compared to 9.40±2.83 for females (P<0.05)] and tail length (μm) [59.65±9.23 for males and 49.57±14.68 for females (P<0.001)]. To our knowledge, this report has, for the first time demonstrated significant differences in the basal level of DNA damage between males and females in a normal healthy Indian population.  相似文献   

5.
Several studies have identified tobacco smoking as a risk factor for anal cancer in both women and men. Samples of anal epithelium from haemorrhoidectomy specimens from current smokers (n=20) and age-matched life-long non-smokers (n=16) were analysed for DNA adducts by the nuclease P1 digestion enhancement procedure of 32P-postlabelling analysis. The study included 14 men and 22 women. Both qualitative and quantitative differences in the adduct profiles were observed between the smokers and non-smokers. The mean adduct level was significantly higher in the smokers than in the non-smokers (1.88±0.71 (S.D.) versus 1.36±0.60 adducts per 108 nucleotides, P=0.02, two-tailed unpaired t-test with Welch’s correction); furthermore, the adduct pattern seen in two-dimensional chromatograms revealed the smoking-related diagonal radioactive zone in 17/20 smokers, but not in any of the non-smokers (P<0.00001, Fisher’s exact test). These results indicate that components of tobacco smoke inflict genotoxic damage in the anal epithelium of smokers and provide a plausible mechanism for a causal association between smoking and anal cancer.  相似文献   

6.
Melatonin is a hormone-like substance that has a variety of beneficial properties as regulator of the circadian rhythm and as anti-inflammatory and anti-cancer agent. The latter activity can be linked with the ability of melatonin to protect DNA against oxidative damage. It may exert such action either by scavenging reactive oxygen species or their primary sources, or by stimulating the repair of oxidative damage in DNA. Since such type of DNA damage is reflected in oxidative base modifications that are primarily repaired by base-excision repair (BER), we tried to investigate in the present work whether melatonin could influence this DNA-repair system. We also investigated the ability of melatonin to inactivate hydrogen peroxide, a potent source of reactive oxygen species. Melatonin at 50 μM and its direct metabolite N1-acetyl-N2-formyl-5-methoxykynuramine reduced DNA damage induced by hydrogen peroxide at approximately the same ratio. Melatonin stimulated the repair of DNA damage induced by hydrogen peroxide, as assessed by the alkaline comet assay. However, melatonin at 50 μM had no impact on the activity in vitro of three glycosylases playing a pivotal role in BER: Endo III, Fpg and ANPG 80. On the other hand, melatonin chemically inactivated hydrogen peroxide, reducing its potential to damage DNA. And finally, melatonin did not influence the repair of an a-basic (AP) site by cellular extracts, as was evaluated by a functional BER assay in vitro. In conclusion, melatonin can have a protective effect against oxidative DNA damage by chemical inactivation of a DNA-damaging agent as well as by stimulating DNA repair, but key factors in BER, viz. glycosylases and AP-endonucleases, do not seem to be affected by melatonin. Further study with other components of the BER machinery and studies aimed at other DNA-repair systems are needed to clarify the mechanism underlying the stimulation of DNA repair by melatonin.  相似文献   

7.
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 μSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 ± 5.7 AU) versus exposed (8.5 ± 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay.  相似文献   

8.
Hoffmann H  Speit G 《Mutation research》2005,581(1-2):105-114
The comet assay (single-cell gel electrophoresis, SCG) is being increasingly used in human biomonitoring for the detection of genotoxic exposures. Cigarette smoking is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds. Therefore, smoking should represent a relevant mutagenic exposure and lead to genotoxic effects in exposed cells. However, our previous investigations as well as several other published studies on human biomonitoring failed to show an effect of smoking on DNA migration in the comet assay, while some other studies did indicate such an effect. Although many factors can contribute to the generation of discrepant results in such studies, clear effects should be obtained after high exposure. We therefore performed a comparative study with healthy male heavy smokers (>20 cigarettes per day) and non-smokers (n=12 in each group). We measured the baseline comet assay effects in fresh whole blood samples and isolated lymphocytes. In addition, the amount of 'formamidopyrimidine DNA-glycosylase (FPG)-sensitive sites' was determined by a combination of the standard comet assay with the bacterial FPG protein. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline DNA damage was comparatively analysed. Duplicate slides from each sample were processed and analysed separately. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. Finally, to compare the comet assay results with another genetic endpoint, all blood samples were investigated in parallel by the micronucleus test (MNT). Baseline and gamma radiation-induced micronucleus frequencies were determined. None of these approaches revealed a significant difference between heavy smokers and non-smokers with regard to a genotoxic effect in peripheral blood cells.  相似文献   

9.
The aim of this study was to investigate a possible influence of occupational exposure to carcinogenic environmental polycyclic aromatic hydrocarbons (c-PAHs) on cellular susceptibility to the induction of the DNA damage. Monitoring was performed and blood samples were collected from two groups of male subjects: occupationally exposed and matched controls. The group exposed to c-PAHs (average age of 35.1 years) consisted of 52 policemen from Košice and 26 policemen and 25 bus drivers (51 altogether) from Sofia. The control group (average age of 36.4 years) consisted of 54 unexposed subjects from Košice and 24 from Sofia. In the investigated groups 52.5% of exposed subjects and 45.3% of control were current smokers. A challenging dose of X-rays (3 Gy) and an alkaline version of the single cell gel electrophoresis (SCGE) assay, known as Comet assay, were used to evaluate levels of induced DNA damage and repair kinetics in isolated human blood lymphocytes. DNA damage detected in lymphocytes prior to or after irradiation did not differ significantly between exposed and unexposed subjects. A significant decrease in repair efficiency due to exposure to PAHs was observed in the exposed individuals from Košice and Sofia, when analysed separately or together. A negative influence of tobacco smoking on the efficiency of DNA repair was observed. Statistically significant differences were found between subgroups stratified according to education level in Sofia: the half times for DNA repair declined with the increasing level of education. These results confirm that environmental exposure to c-PAHs can alter the ability of blood lymphocytes to repair DNA damage and, as a result could potentially lead to effects that are hazardous to human health.  相似文献   

10.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   

11.
DNA repair is a critical process in protecting cellular genetic information from mutation. Nucleotide excision repair (NER) is a mechanism by which cells correct DNA damage caused by agents that form bulky covalent adducts and UV photoproducts such as thymine dimers and 6-4 photoproduct. NER, sometimes called dark repair, is generally accepted as being low in fish compared to mammals. This study was designed to quantitate NER in two related catfish species that have known differential sensitivities to liver carcinomas. The original hypothesis was that the more cancer resistant species, channel catfish (Ictalurus punctatus), would have more efficient DNA repair compared to the more sensitive brown bullhead (Ameriurus nebulosus). In order to measure NER, primary cultured hepatocytes of both species were exposed to UV light (10-40 J/m2) and collected at 0, 24, 48 and 72 h after exposure. Total DNA was extracted from the cells and incubated with T4 endonuclease V. Using alkaline gel electrophoresis, endonuclease sensitive sites (ESS) were quantified. Results from the ESS assay indicated there was a UV dose-response increase in thymine dimers from 0 to 40 J/m2. However, no repair (decrease in number of ESS) occurred in either fish species over a 72-h time period. When cells were exposed to photoreactivating fluorescent light, repair was detected. These studies highlight the difficulty of measuring NER in fish and are consistent with the low levels of NER reported by other researchers in fish.  相似文献   

12.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr–DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA–Cr–protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr–DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr–DNA adducts processed by NER, the incision of CrCl3 [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl3) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 μM we observed 2 Cr(III)–DNA adducts per plasmid. At this same concentration of Cr(III) we found that 17% of the plasmid DNA contained ICLs (0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 μM) was incubated with Bca UvrABC we observed 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)–DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

13.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

14.
Cigarette smoking is generally believed to be responsible for a substantial number of human health problems. However, the causal relationship between smoking, the induction of biological effects and the extent of health problems among smokers have not been fully documented. Using the recently developed lymphocyte micronucleus (MN) assay, we have evaluated the chromosome aberration frequencies in 67 cigarette smokers and 59 matched non-smoking control subjects. We found that the mean MN frequency (per 100 cells) in the smokers was slightly higher than that found in the non-smokers (0.71 +/- 0.23 and 0.58 +/- 0.05 respectively; p less than 0.08). Factors which contribute to the expression of chromosome aberrations were also investigated. A significant age-dependent increase in MN frequencies was observed in both groups (p less than 0.05). Linear regression analysis showed that the age-dependent effects among smokers (r = 0.54; p less than 0.02) was further enhanced by cigarette consumption (r = 0.62; p less than 0.005). Consumption of low potency 'one-a-day' type multivitamins had no effect on MN frequencies in either sex of non-smokers and in the 1 male smoker who took multivitamins but vitamin intake consistently reduced the MN frequencies among female smokers. Using a challenge assay, fidelity of DNA repair was evaluated. Lymphocytes from both smokers and non-smokers were irradiated with single doses of 0 or 100 cGy of X-rays or with double doses of 100 cGy of X-rays each separated by 15 or 60 min (100/15 or 100/60). Chromosome translocation frequencies were consistently higher after irradiation in lymphocytes from smokers than in those from non-smokers. Statistically significant differences were detected when the cells were irradiated with the double doses of 100 cGy X-rays each separated by 60 min (p less than 0.05). These data suggest that lymphocytes from smokers made more mistakes in the repair of DNA damage than cells from non-smokers. Our studies provide new insights into the genotoxic effects of cigarette smoke and new information which may be useful for understanding the mechanisms for induction of health problems from smoking.  相似文献   

15.
Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response.  相似文献   

16.
Comet assay has been used to estimate cancer risk by quantification of DNA damage and repair in response to mutagen challenge. Our goal was to adopt best practices for the alkaline comet assay to measure DNA repair capacity of white blood cells in whole blood of patients with squamous cell carcinoma of the head and neck (HNSCC). The results show that initial damage by 10 Gy of gamma radiation expressed as percent DNA in comet tail was higher in stimulated lymphocytes (61.1+/-11.8) compared to whole blood (43.0+/-12.1) but subsequent repair was similar with comet tail of approximately 20% at 15 min and 13% at 45 min after exposure. Exposure of whole blood embedded in agarose from 5 to 10 Gy gamma radiation was followed by an approximately 70% repair of the DNA damage within 45 min with a faster repair phase in the first 15 min. Variability of the measurement was lower within repeated measurements of the same person compared to measurement of different healthy individuals. The repair during first 15 min was slower (p=0.01) in ex-/non-smokers (41.0+/-2.1%) compared to smokers (50.3+/-2.7%). This phase of repair was also slower (p=0.02) in HNSCC patients (36.8+/-2.1%) compared to controls matched on age and smoking (46.4+/-3.0%). The results of this pilot study suggest that quantification of repair in whole blood following a gamma radiation challenge is feasible. Additional method optimization would be helpful to improve the assay for a large population screening.  相似文献   

17.
Helicobacter pylori is a common human pathogen and its infection is believed to contribute to gastric cancer. Impaired DNA repair may fuel up cancer transformation by the accumulation of mutation and increased susceptibility to exogenous carcinogens. To evaluate the role of infection of H. pylori in DNA damage and repair we determined: (1) the level of endogenous basal, oxidative and alkylative DNA damage, and (2) the efficacy of removal of DNA damage induced by hydrogen peroxide and the antibiotic amoxicillin in the H. pylori-infected and non-infected GMCs. DNA damage and the efficacy of DNA repair were evaluated by the alkaline single cell gel electrophoresis (comet assay). Specific damage to the DNA bases were assayed with the DNA repair enzymes formamidopyrimidine-DNA glycosylase (Fpg) recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The level of basal and oxidative DNA in the infected GMCs was higher than non-infected cells. H. pylori-infected GMCs displayed enhanced susceptibility to hydrogen peroxide than control cells. There was no difference between the efficacy of DNA repair in the infected and non-infected cells after treatment with hydrogen peroxide and amoxicillin. Our results indicate that H. pylori infection may be correlated with oxidative DNA damage in GMCs. Therefore, these features can be considered as a risk marker for gastric cancer associated with H. pylori infection and the comet assay may be applied to evaluate this marker.  相似文献   

18.
Cattle hypocuprosis is a well-known endemic disease in several parts of the world. In a previous paper, the clastogenic effect of copper deficiency in cattle has been described although the occurrence of DNA damage was not directly tested. For this reason, the relation between DNA damage assessed by the Comet assay and Cu plasma concentration was studied in Aberdeen Angus cattle.Blood samples were obtained in heparinized Vacutainer® tubes from 28 female Aberdeen Angus cows during pregnancy or immediately after to give birth. Each sample was divided into two aliquots for Comet assay and Cu plasma determination, respectively. From the 28 cattle sampled, 17 were normocupremic and 11 were hypocupremic.Results obtained showed that whereas the average plasma Cu level in normocupremic cattle was 67.6 μg/dl, in hypocupremic cattle it was 32.1 μg/dl. The increase of DNA damage was mostly evidenced by the decrease of comet degree 1 cells and an increase of comet degree 2 cells. Correlation analysis comparing plasma Cu levels and degree 1 cells showed a correlation coefficient 0.72 (P<0.01). The comparison between plasma Cu levels and comet degree 2 cells was −0.65 (P<0.01). The comparison between plasma Cu levels and the comet length-head diameter medians determined in 23 out of 28 animals showed a correlation coefficient of −0.54 (P<0.01).The induction of DNA damage was clearly supported by the fact that the decrease of plasma Cu levels was correlated with the increase of comet length-head diameter. These findings could be considered as a contribution to the hypothesis that DNA and chromosome damage are a consequence of the higher oxidative stress suffered by hypocupremic animals.  相似文献   

19.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The aim of this study was to investigate the effects of smoking, polymorphisms of XRCC1 codons 194 and 399, and age on levels of basal DNA damage (as measured by an alkaline comet assay) on mononuclear cells in 122 healthy Japanese workers. In the whole group of 122 individuals, the tail moment (TM) values of current smokers (P < 0.001) or former smokers (P = 0.03) were significantly higher than those of nonsmokers. Individuals bearing the XRCC1 399Gln variant allele showed significant increases in TM values in all subjects or in referent subgroups stratified by age or smoking status except in the current smokers group; in contrast, the TM values of individuals bearing the XRCC1 194Trp variant allele were significantly lower than those of individuals bearing wild-type Arg/Arg genotypes. Furthermore, older subjects (≥47 years old) had significantly higher TM values than younger subjects (<47 years old) in all subjects (P = 0.008). Multiple regression analysis indicated that smoking habits, polymorphisms of XRCC1 codons 194 and 399, and age were important variables affecting individuals basal DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号