首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.One of the ultimate goals in cell biology is to understand how cells are assembled. As in the development of multicellular organisms, single cells need to form distinct spatial domains with specific form, structure, and functions. How do cells organize themselves in space to form a specific shape and size?The fission yeast Schizosaccharomyces pombe is an attractive, simple unicellular model organism for studying cell morphogenesis. These are nonmotile cells with highly invariant shape 8–14 µm long and 3 µm in diameter. The relative simplicity of the cells and the powers of genetic approaches and live cell imaging facilitate rigorous and quantitative studies.Here, we review the current understanding of spatial regulation in fission yeast. The cell defines distinct cortical domains at each of the cell tips, along the sides of cells, and at the cell division plane. Each cortical domain is characterized by different sets of molecules, which impart distinct functions. In particular, as it proceeds through its cell cycle, the cell delineates distinct actin-rich cortical regions at cell tips for polarized cell growth and at the middle for cell division. In both cases, a self-organizing network of microtubules directly or indirectly contributes to the proper localization of these markers. In cell polarity, microtubule ends transport polarity factors to the plasma membrane, where they function to recruit protein complexes involved in actin assembly. In cytokinesis, a medial cortical site is marked by an interacting system of microtubules, the nucleus, and cell tip factors, and functions to organize actin filaments into a cytokinetic ring. This reliance on microtubules contrasts with polarity mechanisms in budding yeast in which spatial cues are dependent on septins and actin, but not microtubules. As many of these processes involve conserved proteins, this work in fission yeast contributes toward understanding the more complex microtubule-based regulation of cell migration, cytokinesis, and cell shape regulation in animal cells. This work in fission yeast thus provides a paradigm for how a self-organizing system can shape a cell.  相似文献   

2.
The synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.  相似文献   

3.
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)–tubulin fusion protein to observe microtubules in living yeast cells. GFP–tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.  相似文献   

4.
5.
Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.  相似文献   

6.
7.
A-T (ataxia telangiectasia) individuals frequently display gonadal atrophy, and Atm-/- mice show spermatogenic failure due to arrest at prophase of meiosis I. Chromosomal movements take place during meiotic prophase, with telomeres congregating on the nuclear envelope to transiently form a cluster during the leptotene/zygotene transition (bouquet arrangement). Since the ATM protein has been implicated in telomere metabolism of somatic cells, we have set out to investigate the effects of Atm inactivation on meiotic telomere behavior. Fluorescent in situ hybridization and synaptonemal complex (SC) immunostaining of structurally preserved spermatocytes I revealed that telomere clustering occurs aberrantly in Atm-/- mice. Numerous spermatocytes of Atm-/- mice displayed locally accumulated telomeres with stretches of SC near the clustered chromosome ends. This contrasted with spermatogenesis of normal mice, where only a few leptotene/zygotene spermatocytes I with clustered telomeres were detected. Pachytene nuclei, which were much more abundant in normal mice, displayed telomeres scattered over the nuclear periphery. It appears that the timing and occurrence of chromosome polarization is altered in Atm-/- mice. When we examined telomere-nuclear matrix interactions in spermatocytes I, a significant difference was observed in the ratio of soluble versus matrix-associated telomeric DNA sequences between meiocytes of Atm-/- and control mice. We propose that the severe disruption of spermatogenesis during early prophase I in the absence of functional Atm may be partly due to altered interactions of telomeres with the nuclear matrix and distorted meiotic telomere clustering.  相似文献   

8.
真核生物的小G蛋白 Ran在进化过程中比较保守,它可直接参与细胞周期调控过程,它的缺失突变可以影响很多细胞生理进程。我们已经从小麦(Triticum aestivum L. cv. Jingdong No. 1) cDNA文库中克隆到一个新的RanGTPase的同源基因TaRAN1。在此基础上利用裂殖酵母模式系统研究了该基因的功能。研究结果表明,TaRAN1基因超表达可产生缺陷的纺锤体微管,这可能是导致我们以前观察到的异常染色体分离现象的原因。反义TaRAN1基因表达的酵母细胞,微管系统受到破坏。我们推测TaRAN1蛋白在细胞有丝分裂的纺锤体组装和维持微管系统的完整与稳定过程中起着重要作用。透射电镜观察实验结果显示, 超表达TaRAN1的酵母细胞具有异常的核膜结构,反义表达TaRAN1的酵母细胞有异常的液泡结构和紊乱的膜结构,由此推测, TaRAN1在整个核质运输事件中可能是必须的。  相似文献   

9.
真核生物的小G蛋白Ran在进化过程中比较保守,它可直接参与细胞周期调控过程,它的缺失突变可以影响很多细胞生理进程.我们已经从小麦(Triticum aestivum L.cv.Jingdong No.1)cDNA文库中克隆到一个新的RanGTPase的同源基因TaRAN1.在此基础上利用裂殖酵母模式系统研究了该基因的功能.研究结果表明,TaRAN1基因超表达可产生缺陷的纺锤体微管,这可能是导致我们以前观察到的异常染色体分离现象的原因.反义TaRAN1基因表达的酵母细胞,微管系统受到破坏.我们推测TaRAN1蛋白在细胞有丝分裂的纺锤体组装和维持微管系统的完整与稳定过程中起着重要作用.透射电镜观察实验结果显示,超表达TaRAN1的酵母细胞具有异常的核膜结构,反义表达TaRAN1的酵母细胞有异常的液泡结构和紊乱的膜结构,由此推测,TaRAN1在整个核质运输事件中可能是必须的.  相似文献   

10.
Vacuole Partitioning during Meiotic Division in Yeast   总被引:6,自引:0,他引:6       下载免费PDF全文
A. D. Roeder  J. M. Shaw 《Genetics》1996,144(2):445-458
We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y, were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division.  相似文献   

11.
12.
A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.  相似文献   

13.
Chromosome arrangement in spread nuclei of the budding yeast, Saccharomyces cerevisiae was studied by fluorescence in situ hybridization with probes to centromeres and telomeric chromosome regions. We found that during interphase centromeres are tightly clustered in a peripheral region of the nucleus, whereas telomeres tend to occupy the area outside the centromeric domain. In vigorously growing cultures, centromere clustering occurred in ~90% of cells and it appeared to be maintained throughout interphase. It was reduced when cells were kept under stationary conditions for an extended period. In meiosis, centromere clusters disintegrated before the emergence of the earliest precursors of the synaptonemal complex. Evidence for the contribution of centromere clustering to other aspects of suprachromosomal nuclear order, in particular the vegetative association of homologous chromosomes, is provided, and a possible supporting role in meiotic homology searching is discussed.  相似文献   

14.
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis.  相似文献   

15.
16.
17.

Background

Over the past thirty years several reports of the pairing or association of non-homologous centromeres during meiotic prophase have appeared in the literature. Recently, the homology-independent pairwise association of centromeres, termed centromere coupling, was also reported in budding yeast. It seems paradoxical that centromeres would pair with non-homologous partners during a process intended to align homologous chromosomes, yet the conservation of this phenomenon across a wide range of species suggests it may play an important role in meiosis.

Principal Findings

To better define the role of this phenomenon in budding yeast, experiments were preformed to place centromere coupling within the context of landmark meiotic events. Soon after the initiation of the meiotic program, centromeres were found to re-organize from a single cluster into non-homologous couples. Centromere coupling is detected as soon as chromosome replication is finished and persists while the recombination protein Dmc1 is loaded onto the chromosomes, suggesting that centromere coupling persists through the time of double strand break formation. In the absence of the synaptonemal complex component, Zip1, centromere coupling was undetectable, at all times examined, confirming the essential role of this protein on this process. Finally, the timely release of centromere coupling depends on the recombination-initiating enzyme, Spo11, suggesting a connection between events in homologous pairing/recombination and the regulation of centromere coupling.

Conclusions

Based on our results we propose a role for centromere coupling in blocking interactions between homologous centromeres as recombination initiation is taking place.  相似文献   

18.
19.
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号