首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine strains of litter-decomposing fungi, representing eight species of agaric basidiomycetes, were tested for their ability to remove a mixture of three polycyclic aromatic hydrocarbons (PAHs) (total 60 mg l(-1)) comprising anthracene, pyrene and benzo(a)pyrene (BaP) in liquid culture. All strains were able to convert this mixture to some extent, but considerable differences in degradative activity were observed depending on the species, the Mn(II) concentration, and the particular PAH. Stropharia rugosoannulata was the most efficient degrader, removing or transforming BaP almost completely and about 95% of anthracene and 85% of pyrene, in cultures supplemented with 200 micro M Mn(II), within 6 weeks. In contrast less than 40, 18, and 50% BaP, anthracene and pyrene, respectively, were degraded in the absence of supplemental Mn(II). In the case of Stropharia coronilla, the presence of Mn(II) led to a 20-fold increase of anthracene conversion. The effect of manganese could be attributed to the stimulation of manganese peroxidase (MnP). The maximum activity of MnP increased in S. rugosoannulata cultures from 10 U l(-1) in the absence of Mn(II) to 320 U l(-1) in Mn(II)-supplemented cultures. The latter degraded about 6% of a (14)C-labeled BaP into (14)CO(2) whereas only 0.7% was mineralized in the absence of Mn(II). In solid-state straw cultures, S. rugosoannulata, S. coronilla and Agrocybe praecox mineralized between 4 and 6% of (14)C-labeled BaP within 12 weeks.  相似文献   

2.
The litter-decomposing basidiomycete Stropharia coronilla, which preferably colonizes grasslands, was found to be capable of metabolizing and mineralizing benzo[a]pyrene (BaP) in liquid culture. Manganese(II) ions (Mn2+) supplied at a concentration of 200 μM stimulated considerably both the conversion and the mineralization of BaP; the fungus metabolized and mineralized about four and twelve times, respectively, more of the BaP in the presence of supplemental Mn2+ than in the basal medium. This stimulating effect could be attributed to the ligninolytic enzyme manganese peroxidase (MnP), whose activity increased after the addition of Mn2+. Crude and purified MnP from S. coronilla oxidized BaP efficiently in a cell-free reaction mixture (in vitro), a process which was enhanced by the surfactant Tween 80. Thus, 100 mg of BaP liter−1 was converted in an in vitro reaction solution containing 1 U of MnP ml−1 within 24 h. A clear indication was found that BaP-1,6-quinone was formed as a transient metabolite, which disappeared over the further course of the reaction. The treatment of a mixture of 16 different polycyclic aromatic hydrocarbons (PAHs) selected by the U.S. Environmental Protection Agency as model standards for PAH analysis (total concentration, 320 mg liter−1) with MnP resulted in concentration decreases of 10 to 100% for the individual compounds, and again the stimulating effect of Tween 80 was observed. Probably due to their lower ionization potentials, poorly bioavailable, high-molecular-mass PAHs such as BaP, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene were converted to larger extents than low-molecular-mass ones (e.g., phenanthrene and fluoranthene).  相似文献   

3.
A microbial consortium which rapidly mineralized the environmentally persistent pollutant benzo[a]pyrene was recovered from soil. The consortium cometabolically converted [7-(14)C]benzo[a]pyrene to (14)CO(2) when it was grown on diesel fuel, and the extent of benzo[a]pyrene mineralization was dependent on both diesel fuel and benzo[a]pyrene concentrations. Addition of diesel fuel at concentrations ranging from 0.007 to 0.2% (wt/vol) stimulated the mineralization of 10 mg of benzo[a]pyrene per liter 33 to 65% during a 2-week incubation period. When the benzo[a]pyrene concentration was 10 to 100 mg liter(-1) and the diesel fuel concentration was 0.1% (wt/vol), an inoculum containing 1 mg of cell protein per liter (small inoculum) resulted in mineralization of up to 17.2 mg of benzo[a]pyrene per liter in 16 days. This corresponded to 35% of the added radiolabel when the concentration of benzo[a]pyrene was 50 mg liter(-1). A radiocarbon mass balance analysis recovered 25% of the added benzo[a]pyrene solubilized in the culture suspension prior to mineralization. Populations growing on diesel fuel most likely promoted emulsification of benzo[a]pyrene through the production of surface-active compounds. The consortium was also analyzed by PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments, and 12 dominant bands, representing different sequence types, were detected during a 19-day incubation period. The onset of benzo[a]pyrene mineralization was compared to changes in the consortium community structure and was found to correlate with the emergence of at least four sequence types. DNA from 10 sequence types were successfully purified and sequenced, and that data revealed that eight of the consortium members were related to the class Proteobacteria but that the consortium also included members which were related to the genera Mycobacterium and Sphingobacterium.  相似文献   

4.
The treatment of soils contaminated with organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), by attrition produced large amounts of highly concentrated attrition sludge (PAH – attrition concentrate – PAC). This paper studied the performance of an oxidation process using potassium permanganate (KMnO4) to degrade PAHs that were initially present in attrition concentrates. The influence of operating conditions (temperature, concentration of KMnO4 and reaction time) was studied, and these parameters were optimized using a response surface methodology (RSM). The results showed that the temperature and the reaction time had a significant and positive effect on the degradation of PAHs for the experimental domain studied (temperature between 20 and 60°C and reaction time between 1 and 7 h). The interaction between the temperature and the concentration of KMnO4 significantly influenced the degradation of the PAHs. The temperature and the concentration of KMnO4 were the main parameters that influenced the degradation of both phenanthrene (Phe) and benzo [a] pyrene (BaP). For benzo [a] anthracene (BaA), the temperature was the most influential factor. According to our results, the optimal conditions were defined as [KMnO4] = 0.4 M for 5.5 h at 60°C. These optimal conditions led to degradations of 42.9%, 40.8%, 41.0% and 46.0% of the total PAHs, Phe, BaA and BaP, respectively.  相似文献   

5.
Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated alkaline saline soil with phreatophyte or "water loving plants" was investigated by spiking soil from the former lake Texcoco with 100 mg phenanthrene (Phen) kg(-1) soil, 120 mg anthracene (Ant)kg(-1) soil and 45 mg benzo(a)pyrene (BaP) kg(-1) soil and vegetating it with Athel tamarisk (Tamarix aphylla L Karst.). The growth of the Athel tamarisk was not affected by the PAHs. In soil cultivated with Athel tamarisk, the leaching of PAHs to the 32-34 cm layer decreased 2-fold compared to the uncultivated soil. The BaP concentration decreased to 39% of the initial concentration at a distance smaller than 3 cm from the roots and to 45% at a distance larger than 3cm, but 59% remained in unvegetated soil after 240 days. Dissipation of Ant and Phen decreased with depth, but not BaP. The biodegradation of PAHs was affected by their chemical properties and increased in the presence of T. aphylla, but decreased with depth.  相似文献   

6.
Y Hu  Z Zhou  X Xue  X Li  J Fu  B Cohen  A A Melikian  M Desai  M -S Tang  X Huang  N Roy  J Sun  P Nan  Q Qu 《Biomarkers》2006,11(4):306-318
The study was conducted in a Chinese population with occupational or environmental exposures to polycyclic aromatic hydrocarbons (PAHs). A total of 106 subjects were recruited from coke-oven workers (workers), residents in a metropolitan area (residents) and suburban gardeners (gardeners). All subjects were monitored twice for their personal exposures to PAHs. The biological samples were collected for measurements of 1-hydroxypyrene (1-OHP) and cotinine in urine. The geometric means of personal exposure levels of pyrene, benz(a)anthracene (BaA) and benzo(a)pyrene (BaP) in workers were 1.470, 0.978 and 0.805 microg m-3, respectively. The corresponding levels in residents were 0.050, 0.034 and 0.025 microg m-3; and those in gardeners were 0.011, 0.020 and 0.008 microg m-3, respectively. The conjugate of 1-OHP with glucuronide (1-OHP-G) is the predominant form of pyrene metabolite in urine and it showed strong associations with exposures not only to pyrene, but also to BaA, BaP and total PAHs. Most importantly, a significant difference in 1-OHP-G was even detected between the subgroups with exposures to BaP at < 0.010 and > 0.010 but < 0.020 microg m-3, suggesting that 1-OHP-G is a good marker that can be used for the risk assessment of BaP exposure at levels currently encountered in ambient air. Furthermore, multiple regression analyses of 1-OHP-G on PAHs exposure indicated that cigarette smoke was a major confounding factor and should be considered and adjusted for while using 1-OHP to estimate PAHs exposure.  相似文献   

7.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

8.
A number of highly toxic environmental pollutants including certain polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and 'dioxin-like' polychlorinated biphenyls (PCB) are among the most potent agonists of the aryl hydrocarbon receptor (AHR). Induction of cytochrome P4501A1 (CYP1A1) in mammalian cell culture is widely used as a functional parameter for AHR activation providing an estimate for 'dioxin-like' inducing equivalents in extracts from environmental samples. Since a number of polycyclic aromatic hydrocarbons (PAHs) also act as AHR-agonists, the CYP1A1-inducing potencies, measured as induction of 7-ethoxyresorufin O-deethylase (EROD) activity in rat hepatocyte cultures were analyzed for 16 PAHs frequently present in environmental samples. Among these, seven PAHs including benzo[a]pyrene were relatively potent inducers allowing the determination of Induction Equivalency Factors (IEF). For three PAHs including benzo[k]fluoranthene which acted as weak inducers, IEFs were estimated, while six PAHs including acenaphthylene were classified as inactive. Based on different efficacies the concentration-response characteristics of CYP1A1 induction were analyzed in more detail for benzo[a]pyrene, benzo[k]fluoranthene, and acenaphthylene. Benzo[k]fluoranthene was markedly less effective than benzo[a]pyrene as inducer of EROD activity but even more effective than benzo[a]pyrene as inducer of CYP1A1 protein and mRNA. Acenaphthylene was highly more effective on the level of mRNA than on the levels of protein or EROD activity. Further analysis revealed that the low efficacy of acenaphthylene as inducer of CYP1A1 protein and EROD activity is due to its marked cytotoxicity while no clear-cut explanation was found for the differences in efficacy between benzo[k]fluoranthene and benzo[a]pyrene. The EROD-inducing potency of a mixture of 16 PAH was about 2-fold higher than that calculated on the basis of IEFs of the individual constituents of the mixture.  相似文献   

9.
The frequency of micronucleated erythrocytes (MNE) in 3 inbred mouse strains and 2 of their hybrids (C57BL/6, BALB/c, DBA/2, BDF1 and CDF1) were examined after polycyclic aromatic hydrocarbons (PAHs; 7,12-dimethylbenz[a]anthracene (DMBA), 3-methylcholanthrene (3-MC), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP) and anthracene (ANT] were injected i.p. PAHs are thought to form active metabolites after being administered to mammals. In mouse strains with inducible PAH activating enzymes, such as C57BL/6 or BALB/c, MNE were significantly induced, as compared to control mice, 48 h after DMBA, BaP, or 3-MC was injected. No increase in the frequency of MNE occurred in the DBA/2 strain which cannot induce the activating enzymes. BeP and ANT did not increase the frequency of MNE in any mouse used. The levels of MNE induction in BDF1 or CDF1 hybrids were similar to those in C57BL/6 or BALB/c. These results support the view that the genetic capacity to metabolize PAHs is strongly associated with micronucleus induction as in the case of PAH carcinogenesis.  相似文献   

10.
Four sub-tropical white rot fungi, Trametes versicolor, Trametes pocas, Trametes cingulata and isolate DSPM95 were studied alongside the well studied white rot fungus, Phanerochaete chrysosporium, for their ability to remove polycyclic aromatic hydrocarbons (PAHs) from culture media. Both static shallow cultures and extracellular fluids were studied using media contaminated with a defined mixture of the PAHs; fluorene, phenanthrene, anthracene, pyrene and benzo(a)anthracene. With all isolates, the total loss of the parent compound in 31 days was high for fluorene, at +60%, phenanthrene at +40% and anthracene at +42%. Biotransformation of pyrene and benzo(a)anthracene by all the isolates was low, with the highest reduction of pyrene of 15.2% and benzo(a)anthracene of 15.8% being achieved with P. chrysosporium. Disappearance of the more condensed PAHs, pyrene and benzo(a)anthracene, increased in shallow static cultures with the addition of glucose and glucose oxidase as a source of additional H2O2. The addition of Mn2+ and ABTS (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) to culture supernatants was associated with higher levels of biotransformation. Comparison of the isolates T. versicolor, T. pocas, T. cingulata and isolate DSPM95 with P. chrysosporium showed that these strains were competitive in the reduction of the PAHs, reducing the PAHs by more or less the same magnitude. Also these sub-tropical isolates did not accumulate a lot of HPLC detectable metabolites as much as P. chrysosporium.  相似文献   

11.
Glutathione transferases (GSTs) are phase II enzymes that detoxify a wide range of toxicants and reactive intermediates. One such class of toxicants is the ubiquitous polycyclic aromatic hydrocarbons (PAHs). Certain PAHs are known to cause developmental cardiac toxicity in fish. Herein, we explored the role of GST pi class 2 (GSTp2) in PAH- and PCB-induced cardiac toxicity in zebrafish (Danio rerio) embryos. We measured expression of GSTp2 in embryos exposed to individual and co-exposures of the PAHs benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), and fluoranthene (FL) as well as 3,3',4,4',5-pentachlorobiphenyl (PCB-126). GSTp2 mRNA expression was induced by exposure to BkF, BaP, PCB-126, and BaP+FL and BkF+FL co-exposure. A splice junction morpholino was then used to knockdown GSTp2 in developing zebrafish. GSTp2 knockdown exacerbated the toxicity caused by co-exposures to BkF+FL and BaP+FL. However, GSTp2 knockdown did not affect PCB-126 toxicity. These results further suggest that pi class GSTs serve a protective function against the synergistic toxicity caused by PAHs in developing zebrafish.  相似文献   

12.
1. Radiolabeled metabolites of the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) were shown to be absorbed through the diet of the winter flounder, Pseudopleuronectes americanus. 2. Oral bioavailability of a mixture of naturally produced metabolites was significantly less than that of the parent BaP. 3. Oral bioavailability of a pure metabolite, BaP-7,8-dihydrodiol (7,8-D) was found to be similar to that of BaP. 4. Both metabolites and BaP formed DNA adducts in liver.  相似文献   

13.
The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously shown for several other white rot species. Low levels of laccase were also detected. No lignin peroxidase (LiP) was found in the culture medium, either by spectrophotometric assay or by Western blotting (immunoblotting). Despite the apparent reliance of the strain primarily on MnP, liquid cultures of P. laevis were capable of extensive transformation of anthracene, phenanthrene, benz[a]anthracene, and benzo[a]pyrene. Crude extracellular peroxidases from P. laevis transformed all of the above PAHs, either in MnP-Mn2+ reactions or in MnP-based lipid peroxidation systems. In contrast to previously published studies with Phanerochaete chrysosporium, metabolism of each of the four PAHs yielded predominantly polar products, with no significant accumulation of quinones. Further studies with benz[a]anthracene and its 7,12-dione indicated that only small amounts of quinone products were ever present in P. laevis cultures and that quinone intermediates of PAH metabolism were degraded faster and more extensively by P. laevis than by P. chrysosporium.  相似文献   

14.
Summary When inoculated at high cell densities, three strains of Pseudomonas cepacia degraded the polycyclic aromatic hydrocarbons (PAHs) benzo[a]pyrene, dibenz[a,h]anthracene and coronene as sole carbon and energy sources. After 63 days incubation, there was a 20 to 30% decrease in the concentration of benzo[a]pyrene and dibenz[a,h]anthracene and a 65 to 70% decrease in coronene concentration. The three strains were also able to degrade all the PAHs simultaneously in a PAH substrate mixture containing three-, four-, five- and seven-benzene ring compounds. Furthermore, improved degradation of the five- and seven-ring PAHs was observed when low molecular weight PAHs were present.  相似文献   

15.
Microorganisms originating from a soil contaminated by low levels of polycyclic aromatic hydrocarbons (PAHs) were enriched with three- and four-ring PAHs as primary substrates in the presence of benzo[a]pyrene (BaP). Most enrichment cultures, isolated in the presence or absence of a sorptive matrix, significantly transformed BaP. Evidence of BaP mineralization was obtained with cultures enriched on phenanthrene and anthracene. Our findings supplement literature data suggesting the wide occurrence of microbial activity against BaP. Journal of Industrial Microbiology & Biotechnology (2002) 28, 70–73 DOI: 10.1038/sj/jim/7000211 Received 11 December 2000/ Accepted in revised form 04 September 2001  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (BaP) are widespread environmental pollutants and several lines of experimental evidence have suggested a role in carcinogenesis. PAHs in the environment are exposed to sunlight and photomodified PAHs have been detected in contaminated sediment and air particulate matter; however, the carcinogenicity of photomodified PAHs is not well understood. In this study, we found that solar-simulated light-irradiated BaP (LBaP) inhibited apoptosis, leading to cancer. LBaP suppressed apoptosis induced by cell detachment and serum depletion in a dose and light-irradiated time-dependent manner. The antiapoptotic effect was related to the production of reactive oxygen species from degraded BaP. The cells that survived apoptosis by LBaP treatment were transformed having the ability to form colonies in soft agar and tumors in nude mice. These capabilities were specific to LBaP, not BaP itself. The results suggested that the carcinogenicity of PAHs may be attributable not only to the genetic damage induced by their metabolites, but also to the antiapoptotic effects of oxidative products on exposure to sunlight.  相似文献   

17.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer.The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

18.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

19.
Disruption of cell proliferation control by polycyclic aromatic hydrocarbons (PAHs) may contribute to their carcinogenicity. We investigated role of the aryl hydrocarbon receptor (AhR) in disruption of contact inhibition in rat liver epithelial WB-F344 'stem-like' cells, induced by the weakly mutagenic benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF) and by the strongly mutagenic benzo[a]pyrene (BaP). There were significant differences between the effects of BaA and BbF, and those of the strongly genotoxic BaP. Both BaA and BbF increased percentage of cells entering S-phase and cell numbers, associated with an increased expression of Cyclin A and Cyclin A/cdk2 complex activity. Their effects were significantly reduced in cells expressing a dominant-negative AhR mutant (dnAhR). Roscovitine, a chemical inhibitor of cdk2, abolished the induction of cell proliferation by BbF. However, neither BaA nor BbF modulated expression of the principal cdk inhibitor involved in maintenance of contact inhibition, p27(Kip1), or pRb phosphorylation. The strongly mutagenic BaP induced apoptosis, a decrease in total cell numbers and significantly higher percentage of cells entering S-phase than either BaA or BbF. Given that BaP induced high levels of Cyclin A/cdk2 activity, downregulation of p27(Kip1) and hyperphosphorylation of pRb, the accumulation of cells in S-phase was probably due to cell proliferation, although S-phase arrest due to blocked replication forks can not be excluded. Both types of effects of BaP were significantly attenuated in dnAhR cells. Transfection of WB-F344 cells with siRNA targeted against AhR decreased induction of Cyclin A induced by BbF or BaP, further supporting the role of AhR in proliferative effects of PAHs. This suggest that activation of AhR plays a significant role both in disruption of contact inhibition by weakly mutagenic PAHs and in genotoxic effects of BaP possibly leading to enhanced cell proliferation. Thus, PAHs may increase proliferative rate and the likelihood of fixation of mutations.  相似文献   

20.
Phytoremediation is a cost-effective biotechnology for decontamination of polycyclic aromatic hydrocarbons (PAHs)-polluted soils. A greenhouse experiment was conducted to determine the growth of Mimosa monancistra, a N2-fixing leguminous plants, and its capacity to remove phenanthrene, anthracene, and benzo(a)pyrene (BaP)from soil. The PAHs decreased shoot and root dry biomass of M. monancistra 2.7- and 3.9-fold, respectively, compared to uncontaminated soil and inhibited nodule formation. The removal of phenanthrene and anthracene was similar in vegetated and unvegetated soil, but the dissipation of BaP was significantly faster in vegetated soil as compared to unvegetated soil after 14, 56, 70, and 90 d. After 90 d, dissipation of BaP was 96% in vegetated soil and 87% in unvegetated soil. Nitrification and ammonification were not affected by the addition of PAHs as concentrations of NH4+, NO2-, and NO3- were similar in contaminated and uncontaminated vegetated soil. Growth of M. monancistra was inhibited by contamination with hydrocarbons, but removal of BaP was accelerated in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号