首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
lacA coding for beta-galactosidase (beta-gal) was cloned from the genomic DNA of Aspergillus oryzae RIB40. There were 9 exons in lacA and the coding region of 3,015 bp encoded a protein of 1,005 aa with a deduced molecular mass of 109,898. A. oryzae lacA was highly homologous to fungal beta-gals, with the highest aa identity of 70.7% to A. niger lacA, and also showed significant identity to acid beta-gals belonging to family 35 glycosyl hydrolases. Approximately 10 copies of lacA under control of A. oryzae glaA promoter were integrated into the chromosome of A. oryzae M-2-3. The recombinant strain expressed more than 700-fold of the beta-gal activity as compared to the wild type strain under induction by maltose.  相似文献   

2.
3.
We have isolated transposon insertions in the lacA gene encoding an endogenous beta-galactosidase of Bacillus subtilis. Upstream of the putative operon containing lacA is a negative regulator, lacR, which encodes a product related to a family of regulators that includes the lactose repressor, lacI, of Escherichia coli. New strains with insertions in the lacA gene should be of use in studies using lacZ fusions in B. subtilis.  相似文献   

4.
5.
Glycoside hydrolases are organized into glycoside hydrolase families (GHFs) and within this larger group, the beta-galactosidases are members of four families: 1, 2, 35, and 42. Most genes encoding GHF 42 enzymes are from prokaryotes unlikely to encounter lactose, suggesting a different substrate for these enzymes. In search of this substrate, we analyzed genes neighboring GHF 42 genes in databases and detected an arrangement implying that these enzymes might hydrolyze oligosaccharides released by GHF 53 enzymes from arabinogalactan type I, a pectic plant polysaccharide. Because Bacillus subtilis has adjacent GHF 42 and GHF 53 genes, we used it to test the hypothesis that a GHF 42 enzyme (LacA) could act on the oligosaccharides released by a GHF 53 enzyme (GalA) from galactan. We cloned these genes, plus a second GHF 42 gene from B. subtilis, yesZ, into Escherichia coli and demonstrated that cells expressing LacA with GalA gained the ability to use galactan as a carbon source. We constructed B. subtilis mutants and showed that the increased beta-galactosidase activity generated in response to the addition of galactan was eliminated by inactivating lacA or galA but unaffected by the inactivation of yesZ. As further demonstration, we overexpressed the LacA and GalA proteins in E. coli and demonstrated that these enzymes degrade galactan in vitro as assayed by thin-layer chromatography. Our work provides the first in vivo evidence for a function of some GHF 42 beta-galactosidases. Similar functions for other beta-galactosidases in both GHFs 2 and 42 are suggested by genomic data.  相似文献   

6.
The gene (lacA) coding for Escherichia coli galactoside transacetylase was cloned into the pTrcHisB plasmid, and the corresponding hexahistidine-tagged enzyme was over-expressed and purified. The kinetic constants of the tagged protein were determined, yielding values in excellent agreement with previous observations reported for the natural enzyme. LacA Tyrosine83 was then substituted with a Valine: by comparing the K(m) and k(cat) values observed for wild type and mutant enzymes using isopropyl-thio-beta-d-galactopyranoside or p-nitrophenyl-beta-d-galactopyranoside as substrates, Tyrosine83 was identified as an essential residue for the catalytic activity of E. coli galactoside transacetylase.  相似文献   

7.
Peng H  Wu G  Shao W 《Anaerobe》2008,14(2):125-127
A bifunctional aldehyde/alcohol dehydrogenase gene (adhE) from Thermoanaerobacter ethanolicus JW200 was identified and cloned. To unambiguously characterize the activity of AdhE, the recombinant protein was purified. The purified AdhE exhibited high enzymatic activity attributed to aldehyde dehydrogenase (11.0+/-0.3U/mg) and low alcohol dehydrogenase activity (2.6+/-0.2U/mg). Analysis of adhE homologous expression in T. ethanolicus showed that AdhE affected ethanol production.  相似文献   

8.
9.
We have isolated mutations that appear to inactivate the gene (lacA) encoding an endogenous beta-galactosidase activity in Bacillus subtilis and in a closely linked negative regulatory element (lacR). Both genes map to the hisA-thrA region. The lacA mutations may help to avoid some of the problems arising from the use of the Escherichia coli lacZ gene as a reporter gene in B. subtilis.  相似文献   

10.
11.
A flocculent Saccharomyces cerevisiae strain secreting Aspergillus niger beta-galactosidase activity was constructed by transforming S. cerevisiae NCYC869-A3 strain with plasmid pVK1.1 harboring the A. niger beta-galactosidase gene, lacA, under the control of the ADH1 promoter and terminator. Compared to other recombinant S. cerevisiae strains, this recombinant yeast has higher levels of extracellular beta-galactosidase activity. In shake-flask cultures, the beta-galactosidase activity detected in the supernatant was 20 times higher than that obtained with previously constructed strains (Domingues et al. 2000a). In bioreactor culture, with cheese-whey permeate as substrate, a yield of 878.0 nkat/gsubstrate was obtained. The recombinant strain is an attractive alternative to other fungal beta-galactosidase production systems as the enzyme is produced in a rather pure form. Moreover, the use of flocculating yeast cells allows for enzyme production with high productivity in continuous fermentation systems with facilitated downstream processing.  相似文献   

12.
13.
The predicted protein sequence of the nodL gene from Rhizobium leguminosarum was screened against translations of the GenBank DNA sequence database. A very strong homology was found to lacA, which encodes thiogalactoside transferase; homology between NodL and the cysE gene product (serine acetyl transferase) was also found. Comparison of the conserved regions of the three protein sequences indicated a domain that may be an active site of the enzymes.  相似文献   

14.
A 5451-bp genome fragment of the hyperthermophilic anaerobic eubacterium Thermotoga neapolitana has been cloned and sequenced. The fragment contains one truncated and three complete open reading frames highly homologous to the starch/maltodextrin utilization gene cluster from Thermotoga maritima whose genome sequence is known. The incomplete product of the first frame is highly homologous to MalG, the E. coli protein of starch and maltodextrin transport. The product of the second frame, AglB, is highly homologous to cyclomaltodextrinase with the alpha-glucosidase activity TMG belonging to family 13 of glycosyl hydrolases (GH13). The product of the third frame, AglA, is homologous to the Thermotoga maritima cofactor-dependent alpha-glucosidase from the GH4 family. The two enzymes form a separate branch on the phylogenetic tree of the family. The AglA and AglB proteins supplement each other in substrate specificity and can ensure complete hydrolysis to glucose of cyclic and linear maltodextrins, the intermediate products of starch degradation. The product of the fourth reading frame has sequence similarity with the riboflavin-specific deaminase RibD from T. maritima. The homologous locus of this bacterium, between the aglA and ribD genes, has five open reading frames missing in T. neapolitana. The nucleotide sequences of two frames are homologous to transposase genes. The deletion size is 2.9 kb.  相似文献   

15.
16.
Recombinant plasmids containing fusion proteins composed of two different modules were constructed and expressed in Escherichia coli. The modules encoded the lactase LacA (LacZ) from the thermophilic bacterium Thermoanaerobacter ethanolicus and the cellulase CelD, a cellulose-binding module (CBM) from Anaerocellum thermophilum. The CelD CBM provides a spontaneous and strong sorption of the fusion proteins onto a cellulose carrier. The enzymatic activities of both the free LacA protein and LacA-CelD CBM fusion proteins immobilized onto the cellulose carrier were assessed. The LacA activity of the fusion protein was dependent upon its position with respect to the CBM. The highest level of lactase activity and stability was observed when the lactase domain was localized at its N terminus. A continuous-flow column reactor of lactase immobilized on a cellulose carrier was constructed, and its activity was assessed. The lactose hydrolysis rate for a 150 mM (5%) solution at a flow rate of 1 reactor volume per min was 75%, which is a value optimal for further whey transformation into glucose/galactose syrup.  相似文献   

17.
Mai V  Wiegel J  Lorenz WW 《Gene》2000,247(1-2):137-143
The gene for the bifunctional xylosidase-arabinosidase (xarB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus JW200 was cloned, sequenced, and expressed in Escherichia coli (Genebank Accession No. AF135015). Analysis of the recombinant enzyme revealed activity against multiple substrates with the highest affinity towards p-nitrophenyl beta-D-xylopyranoside (pNPX) and highest activity against p-nitrophenyl alpha-L-arabinopyranoside (pNPAP), respectively. Thus, we classify this enzyme as a bifunctional xylosidase-arabinosidase. Even though both sequences are 96% identical on the amino acid level, excluding the amino-terminal end, a frame-shift mutation in the 5' region of the gene in T. brockii ATCC 33075 and a deletion in a downstream open reading frame in T. ethanolicus seem to have occurred through evolutionary divergence of these two species. This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4.  相似文献   

18.
We are investigating glycosyl hydrolases from new psychrophilic isolates to examine the adaptations of enzymes to low temperatures. A beta-galactosidase from isolate BA, which we have classified as a strain of the lactic acid bacterium Carnobacterium piscicola, was capable of hydrolyzing the chromogen 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside (X-Gal) at 4 degrees C and possessed higher activity in crude cell lysates at 25 than at 37 degrees C. Sequence analysis of a cloned DNA fragment encoding this activity revealed a gene cluster containing three glycosyl hydrolases with homology to an alpha-galactosidase and two beta-galactosidases. The larger of the two beta-galactosidase genes, bgaB, encoded the 76.8-kDa cold-active enzyme. This gene was homologous to family 42 glycosyl hydrolases, a group which contains several thermophilic enzymes but none from lactic acid bacteria. The bgaB gene from isolate BA was subcloned in Escherichia coli, and its enzyme, BgaB, was purified. The purified enzyme was highly unstable and required 10% glycerol to maintain activity. Its optimal temperature for activity was 30 degrees C, and it was inactivated at 40 degrees C in 10 min. The K(m) of freshly purified enzyme at 30 degrees C was 1.7 mM, and the V(max) was 450 micromol. min(-1). mg(-1) with o-nitrophenyl beta-D-galactopyranoside. This cold-active enzyme is interesting because it is homologous to a thermophilic enzyme from Bacillus stearothermophilus, and comparisons could provide information about structural features important for activity at low temperatures.  相似文献   

19.
A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli.  相似文献   

20.
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号