首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Usual concentrations of antimycin A, rotenone and EDTA, individally or in combination, reduced aerobic growth rate and cell yield of Candida albicans to about half its normal level and to about the levels of previously-described acetate-negative, cytochrome-complete and aa3-deficient variants which were little affected by the inhibitors. Anaerobic conditions (not affected by antimycin A) reduced growth rate and cell yield of all cultures-including that of a nonrespiring aa3, b-deficient mutant-to low, equal levels. Antimycin A but not rotenone prevented growth of the normal strain on ethanol medium. Cyanide and antimycin A blocked most of the respiration of the normal strain and cytochrome-complete variant, but did not affect that of the cytochrome aa3-deficient mutant. Rotenone and EDTA did not affect respiration of any of the cultures. SHAM blocked cyanide- and antimycin A-insensitive respiration and prolonged the lag phases of the three respiring cultures, especially in the presence of antimycin A, but alone increased oxygen-uptake rate of the cytochromecomplete cultures while curtailing that of the cytochrome aa3-deficient mutant. Resting cells, especially wild-type, grown in medium containing antimycin A exhibited lowered oxygen-uptake rate, which was increased upon the addition of cyanide or antimycin A. Antimycin A stimulated, but cyanide inhibited, respiration of cytochrome-complete cultures grown in the presence of rotenone but did not affect that of the cytochrome aa3-deficient mutant. SHAM inhibited respiration of all antimycin A- or rotenone-grown cultures. The high rate of respiration of C. albicans in the presence of inhibitors for three sites of electron transport in the conventional oxidative pathway, the inhibition of this respiration by SHAM and its loss by the absence of cytochrome b, indicate an alternate oxidative pathway in this organism which crosses the conventional one at cytochrome b.This work was supported by Public Health Service Graduate Dental Training Grant DE 00144 and the Graduate School and the Department of Microbiology, Southern Illinois University.  相似文献   

3.
4.
5.
Candida albicans contains a cryptic cyanide and antimycin A insensitive respiratory system. This alternate oxidase was found (i) at all growth rates from =0.05 to 0.26 in a chemostat culture and (ii) in both mycelial and yeast forms of the organism. Neither chloramphenicol nor cycloheximide prevented the expression of the alternate oxidase. Salicyl-hydroxamic acid was a potent inhibitor of the cyanide insensitive respiration. The respiration of mitochondria grown in the presence of antimycin A was not inhibited by cyanide or antimycin A but was inhibited by salicylhydroxamic acid.Abbreviations KCN potassium cyanide - SHAM salicyl hydroxamic acid  相似文献   

6.
This minireview explores the environmental bioremediation mediated by genetically engineered (GE) bacteria and it also highlights the limitations and challenges associated with the release of engineered bacteria in field conditions. Application of GE bacteria based remediation of various heavy metal pollutants is in the forefront due to eco-friendly and lesser health hazards compared to physico-chemical based strategies, which are less eco-friendly and hazardous to human health. A combination of microbiological and ecological knowledge, biochemical mechanisms and field engineering designs would be an essential element for successful in situ bioremediation of heavy metal contaminated sites using engineered bacteria. Critical research questions pertaining to the development and implementation of GE bacteria for enhanced bioremediation have been identified and poised for possible future research. Genetic engineering of indigenous microflora, well adapted to local environmental conditions, may offer more efficient bioremediation of contaminated sites and making the bioremediation more viable and eco-friendly technology. However, many challenges are to be addressed concerning the release of genetically engineered bacteria in field conditions. There are possible risks associated with the use of GE bacteria in field condition, with particular emphasis on ways in which molecular genetics could contribute to the risk mitigation. Both environmental as well as public health concerns need to be addressed by the molecular biologists. Although bioremediation of heavy metals by using the genetically engineered bacteria has been extensively reviewed in the past also, but the bio-safety assessment and factors of genetic pollution have been never the less ignored.  相似文献   

7.
To clarify the involvement of the arginine decarboxylase (ADC) pathway in the salt stress response, the polyamine titre, putrescine biosynthetic gene expression, and enzyme activities were investigated in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] in vitro callus under salt stress, during recovery after stress, and when ADC was inhibited by D-arginine, an inhibitor of ADC. Salt stress (200 mM NaCl) caused an increase in thiobarbituric acid-reactive substances (TBARS) and electrolyte leakage (EL) of the callus, which was accompanied by an increase in free putrescine content, during 7 d of treatment. Conjugated putrescine was also increased, but this increase was limited to the early stage of salt stress. Accumulation of putrescine was in accordance with induction of ADC activity and expression of the apple ADC gene (MdADC). When callus that had been treated with 200 mM NaCl was transferred to fresh medium with (successive stress) or without (recovery) NaCl, TBARS and EL were significantly reduced in the recovery treatment, indicating promotion of formation of new callus cells, compared with the successive stress treatment. Meanwhile, MdADC expression and ADC activity were also decreased in the callus undergoing recovery, whereas those of the callus under successive stress were increased. Ornithine decarboxylase (ODC) activity showed a pattern opposite to that of ADC in these conditions. D-Arginine treatment led to more serious growth impairment than no treatment under salt stress. In addition, accumulation of putrescine, induction of MdADC, and activation of ADC in D-arginine-treated callus were not comparable with those of the untreated callus. Exogenous addition of putrescine could alleviate salt stress in terms of fresh weight increase and EL. All of these findings indicated that the ADC pathway was tightly involved in the salt stress response. Accumulation of putrescine under salt stress, the possible physiological role of putrescine in alleviating stress damage, and involvement of MdADC and ADC in response to salt stress are discussed.  相似文献   

8.
The alternate pathway of signal transduction via hydrolysis of phosphatidylcholine, the major cellular phospholipid, has been investigated in murine peritoneal macrophages. A sustained formation of diacylglycerol, is preceded by an enhanced production of phosphatidic acid, when the macrophages were given a stimulus with 12-O-tetradecanoyl phorbol-13-acetate for sixty minutes. Production of choline and choline metabolites are significantly increased too. Propranolol, which inhibits phosphatidate phosphohydrolase, the enzyme responsible for conversion of phosphatidic acid to diacylglycerol, can effectively block the formation of diacylglycerol. Inhibition of protein kinase C either by its inhibitors, staurosporine and H-7 or by depletion, apparently affect the generation of the lipid products. Moreover, based on the results of transphosphatidylation reaction, involvement of a phospholipase D in the phosphatidylcholine-hydrolytic pathway in macrophages is predicted. These observations support the view that probably the phorbol ester acting directly on protein kinase C of the macrophages activate their phosphatidylcholine-specific phospholipase D to allow a steady generation of second messengers, to enable them to participate in the cell signalling process in a more efficient manner than those generated in the phosphoinositide pathway of signal transduction. (Mol Cell Biochem 000: 000-000,1999)  相似文献   

9.
In isolated rabbit lungs standardized amounts of edema were induced. Stimulation with the Ca ionophore A23187, leukotriene C4, Pseudomonas aeruginosa cytotoxin and human serum (activated complement) all resulted in protein leakage into the alveolar space with no change in the total phospholipid content. The pressure-volume characteristics of the lungs and the characteristics of the lavage surfactant (Wilhelmy balance) were markedly altered, correlating to the lavage protein content. The surfactant alterations were reproduced by addition of perfusion fluid protein to control surfactant in vitro. All changes were far less expressed or even missing in isolated lungs developing the same amount of edema due to omittance of proteins from the perfusion liquid. Different proteins added to control surfactant in the Wilhelmy balance showed a marked rank order of potency in interfering with surfactant function: immunoglobulins G and M and elastin less than albumin less than fibrinogen less than fibrin monomers. The fibrin monomer effect was reproduced by addition of thrombin to a surfactant fibrinogen mixture and was partly reversed by subsequent incubation with plasmin. In conclusion, high-permeability edema induced by different means results in alterations of lung mechanics and surface activity of lavaged surfactant, presumably due to protein surfactant interaction. Among different proteins, fibrin monomers are especially effective in interfering with surfactant function.  相似文献   

10.
The alternative pathway is a cyanide-resistant and non-phosphorylatory electron transport pathway in mitochondria of higher plants. Alternative oxidase (AOX) is the terminal oxidase of this pathway. Our present study investigated the effect of exogenous salicylic acid (SA) on alternative pathway in cucumber (Cucumis sativus L.) seedlings under low temperature stress. Results showed that during the process of low temperature stress, the alternative pathway capacity was enhanced as AOX expression increased in SA pretreated seedlings. Compared with seedlings without SA pretreatment, slower decrease of relative water content and lower levels of electrolyte leakage, H2O2 and malonyldialdehyde content were detected in SA pretreated seedlings. These results indicated that SA could alleviate the injury caused by low temperature on cucumber seedlings. Since the special protective functions of alternative pathway and AOX in plants, we suggested that the alternative pathway was related to SA-mediated plant resistance to environmental stresses such as low temperature.  相似文献   

11.
马占相思树苗对低温冻害的抗性研究   总被引:4,自引:0,他引:4  
以盆栽马占相思PNG17868家系树苗为材料,研究了低温胁迫下树苗生长发育有关的生理生化指标的变化及其抗冻害的关系。结果表明:随着低温胁迫程度的加深和时间延长,植株细胞电导率显著升高,细胞膜ATPase活性呈下降趋势,而可溶性糖、脯氨酸和可溶性蛋白质含量亦不断升高,表现出耐寒植物较典型的生理特点,说明该植物有明显的渗透调节能力和抗寒性。在零下低温(0~6℃)胁迫下,植物细胞防御系统的保护酶类(CAT、POD、SOD)的活性先是升高,然后有所下降,但下降幅度不大。这表明了马占相思PNG17868家系对低温有较强的适应能力,在温度日益降低(0~6℃)条件下体内保护酶仍能维持较高的活性水平,减轻了由膜脂过氧化引起的膜伤害,是植物提高抗寒性、免遭低温冻害的重要原因。  相似文献   

12.
13.
以低温敏感型的"丰禾1号"和耐低温型的"郑单958"两个玉米品种为实验材料,采用GA3浸种的处理方式("丰禾1号"为20 mg·L-1、"郑单958"为5 mg·L-1),探究了GA3对低温胁迫条件下玉米种子萌发过程中种胚中可溶性糖和可溶性蛋白含量及淀粉酶活性和呼吸途径关键酶活性的影响。结果表明:低温胁迫条件下,GA3浸种处理显著提升了玉米种胚中可溶性糖含量及可溶性蛋白的积累,增强了低温胁迫下细胞的渗透势;α-淀粉酶、β-淀粉酶和总淀粉酶活性显著提高;提高了苹果酸脱氢酶(MDH)、丙酮酸激酶(PK)、联合酶(G-6-PDH和6-PGDH)的活性,提高了糖酵解(EMP)、三羧酸循环(TCA)、磷酸戊糖途径(PPP)途径的运转效率,保证了细胞的物质代谢和能量供应;GA3浸种处理可以显著提高种子对低温的抵抗能力,从而在低温胁迫条件下促进其萌发。  相似文献   

14.
Two psychrotrophic strains of Rhizobium, DDSS69, a non-cold acclimated strain, and ATR1, a cold acclimated strain, were subjected to cold stress. A 4-fold increase in the specific activity of lactate dehydrogenase (LDH) was characteristic for cold stressed cells of DDSS69, whereas ATR1 showed a higher LDH activity in general, which increased 1.5-fold under cold stress. Cold sensitive mutants of DDSS69 which could not grow below 15 degrees C, in contrast to the wild type which could grow at 5 degrees C, were isolated using Tn5-tagged mutagenesis. These mutants showed a 40% lower LDH activity than the wild type grown at 5 degrees C that was comparable to the wild type grown at 15 degrees C. High specific activity of succinic dehydrogenase (SDH) at 28 degrees C in both strains and mutants indicated that aerobic respiration via the citrate cycle is the normal mode of saccharide utilization. Shifts to lower temperatures decreased the specific activity of SDH. However, alcohol dehydrogenase (ADH) activity remained very low in both the strains and the mutants at low temperatures indicating that a shift from aerobic saccharide metabolism to anaerobic one under cold stress involves lactate glycolysis rather than alcohol fermentation. There was an increase in membrane-bound ATPase activity under cold stress which is correlated to higher LDH activity. These data show that, in psychrotrophic Rhizobium strains, cold stress induces a switchover of respiratory metabolism from aerobic to anaerobic pathway, especially lactate glycolysis.  相似文献   

15.
Both phospholipase D (PLD, EC 3.1.4.4) and salicylic acid (SA) play important roles in response to external stimulation and activating defense system in plants. However, roles of the two signals in plants during the development of thermotolerance induced by low temperature acclimation remain unclear. In the experiment presented in the paper, grape berries (Vitis vinifera L. cv. Chardonnay) were pretreated at 8 °C for 3 h and then transferred to 45 °C for heat stress. Compared with the control without low temperature pretreatment, membrane permeability and malondialdehyde (MDA) contents were reduced and the expression of HSP73 increased in the low temperature-pretreated berries under heat stress. During low temperature acclimation, PLD, SA and HSP73 could be activated. Meanwhile, the expression of HSP73 and the accumulation of free SA induced by low temperature can be inhibited by PLD activity inhibitor. All these results suggest that the activation of PLD is an early response to low temperature, and it is involved in the accumulation of free SA and the development of thermotolerance induced by low temperature acclimation.  相似文献   

16.
17.
茄子嫁接苗根系对低温环境胁迫的响应   总被引:16,自引:1,他引:16  
以‘济农2000’为对照,研究了低温胁迫下不同抗冷性茄子砧木嫁接苗根系的生理生化变化及其与抗冷性的关系.结果表明,在10 ℃(昼)/3 ℃(夜)低温处理初期,根系对低温最敏感,表现为MDA含量、冷害指数、POD活性、脯氨酸含量、可溶性蛋白含量等迅速增加,而根系呼吸速率、SOD、CAT活性等迅速降低.随着低温胁迫时间的延长,根系呼吸速率持续降低,而冷害指数持续升高,渗透调节物质基本呈增加的趋势.常温恢复3 d后,呼吸速率、渗透调节物质、SOD活性等升高,但均以抗冷性较强的赤茄砧木嫁接苗恢复能力较强,而抗冷性较弱的台茄砧木嫁接苗与自根苗较差.利用抗冷性较强的砧木进行嫁接,可显著增强茄子根系的活性,进而提高其抗冷性.  相似文献   

18.
19.
马占相思树苗的低温适应性研究   总被引:1,自引:0,他引:1  
徐位力  苏开君  陈周裕  江萍  牛志刚 《广西植物》2003,23(5):470-472,475
马占相思 (Acacia mangium) PNG1 786 8家系树苗在人工气候室经低温处理后 ,没有因为僵化而失去生长能力 ,体内相关的生理指标产生明显变化。随着温度不断下降至 -6℃产生冻害 ,植株的电导率升高了4 5 9% ,脯氨酸含量升高了 6 2 .4 % ,可溶性糖含量升了 2 6 .2 % ,可溶性蛋白含量升高了 2 5 .9%。表明马占相思PNG1 786 8树苗对低温有一定适应能力。脯氨酸、可溶性糖和蛋白的含量提高可能是植株抗冷性的机制。  相似文献   

20.
实验结果表明:烟划愈伤组织在生长和衰老期间,总呼吸速率(Vt)分别在11d和19d出现2次呼吸跃升;细胞色素途径的运行(ρ'Vcyt)与Vt的变化几乎一致,表明细胞色素途径仍组织主要的电子传递途径;交替途径容量(Valt)及其与Vt的比值(Valt/Vt):在15d前不断上升,而在15-19d之间处于稳定水平后下降。交替途径运行(ρValt)及其对Vt的贡献(ρValt/Vt)却与Valt变化趋势  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号