首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many extremely preterm infants continue to suffer from bronchopulmonary dysplasia, which results from abnormal saccular-stage lung development. Here, we show that fibroblast growth factor-10 (FGF-10) is required for saccular lung development and reduced in the lung tissue of infants with bronchopulmonary dysplasia. Although exposure to bacteria increases the risk of bronchopulmonary dysplasia, no molecular target has been identified connecting inflammatory stimuli and abnormal lung development. In an experimental mouse model of saccular lung development, activation of Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) inhibited FGF-10 expression, leading to abnormal saccular airway morphogenesis. In addition, Toll-mediated FGF-10 inhibition disrupted the normal positioning of myofibroblasts around saccular airways, similar to the mislocalization of myofibroblasts seen in patients with bronchopulmonary dysplasia. Reduced FGF-10 expression may therefore link the innate immune system and impaired lung development in bronchopulmonary dysplasia.  相似文献   

2.
Fibroblast growth factor-21 (FGF21) signaling requires the presence of β-Klotho, a co-receptor with a very short cytoplasmic domain. Here we show that FGF21 binds directly to β-Klotho through its C-terminus. Serial C-terminal truncations of FGF21 weakened or even abrogated its interaction with β-Klotho in a Biacore assay, and led to gradual loss of potency in a luciferase reporter assay but with little effect on maximal response. In contrast, serial N-terminal truncations of FGF21 had no impact on β-Klotho binding. Interestingly, several of them exhibited characteristics of partial agonists with minimal effects on potency. These data demonstrate that the C-terminus of FGF21 is critical for binding to β-Klotho and the N-terminus is critical for fibroblast growth factor receptor (FGFR) activation.

Structured summary

MINT-6799939: FGFR1c (uniprotkb:P11362) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)MINT-6799907, MINT-6799922: FGF21 (uniprotkb: Q9NSA1) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)  相似文献   

3.
Xiaomei Yang 《FEBS letters》2010,584(11):2207-2212
The beta-2 adrenergic receptor (β2AR) has a carboxyl terminus motif that can interact with PSD-95/discs-large/ZO1 homology (PDZ) domain-containing proteins. In this paper, we identified membrane-associated guanylate kinase inverted-3 (MAGI-3) as a novel binding partner of β2AR. The carboxyl terminus of β2AR binds with high affinity to the fifth PDZ domain of MAGI-3, with the last four amino acids (D-S-L-L) of the receptor being the key determinants of the interaction. In cells, the association of full-length β2AR with MAGI-3 occurs constitutively and is enhanced by agonist stimulation of the receptor. Our data also demonstrated that β2AR-stimulated extracellular signal-regulated kinase-1/2 (ERK1/2) activation was substantially retarded by MAGI-3 expression. These data suggest that MAGI-3 regulates β2AR-mediated ERK activation through the physical interaction between β2AR and MAGI-3.

Structured summary

MINT-7716556: beta2AR (uniprotkb:P07550) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q5TCQ9) by anti tag coimmunoprecipitation (MI:0007)MINT-7716593: beta2AR (uniprotkb:P18762) physically interacts (MI:0915) with MAGI-3 (uniprotkb:Q9EQJ9) by anti bait coimmunoprecipitation (MI:0006)MINT-7716630: MAGI-3 (uniprotkb:Q5TCQ9) and beta2AR (uniprotkb:P07550) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7716382, MINT-7716335: MAGI-3 (uniprotkb:Q5TCQ9) physically interacts (MI:0915) with beta2AR (uniprotkb:P07550) by pull down (MI:0096)MINT-7716320, MINT-7716422, MINT-7716502, MINT-7716450, MINT-7716470: beta2AR (uniprotkb:P07550) binds (MI:0407) to MAGI-3 (uniprotkb:Q5TCQ9) by pull down (MI:0096)  相似文献   

4.
Fibroblast growth factor (FGF) 21, a structural relative of FGF23 that regulates phosphate homeostasis, is a regulator of insulin-independent glucose transport in adipocytes and plays a role in the regulation of body weight. It also regulates ketogenesis and adaptive responses to starvation. We report that in a reconstituted receptor activation assay system using BaF3 cells, which do not endogenously express any type of FGF receptor (FGFR) or heparan sulfate proteoglycan, FGF21 alone does not activate FGFRs and that betaKlotho is required for FGF21 to activate two specific FGFR subtypes: FGFR1c and FGFR3c. Coexpression of betaKlotho and FGFR1c on BaF3 cells enabled FGF21, but not FGF23, to activate receptor signaling. Conversely, coexpression of FGFR1c and Klotho, a protein related to betaKlotho, enabled FGF23 but not FGF21 to activate receptor signaling, indicating that expression of betaKlotho/Klotho confers target cell specificity on FGF21/FGF23. In all of these cases, heparin enhanced the activation but was not essential. In 3T3-L1 adipocytes, up-regulation of glucose transporter (GLUT) expression by FGF21 was associated with expression of betaKlotho, which was absent in undifferentiated 3T3-L1 fibroblasts. It is thus suggested that betaKlotho expression is a crucial determinant of the FGF21 specificity of the target cells upon which it acts in an endocrine fashion.  相似文献   

5.
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.  相似文献   

6.
7.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor-subtype present in the cell. Thus, ERalpha has a neuroprotective effect, while ERbeta mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen-induced apoptosis through ER-beta requires the expression of Fas- and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia-secreted products induce the expression of FasL necessary to mediate estradiol-ERbeta apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number.  相似文献   

8.
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator involved in a broad range of physiological and pathophysiological processes. The receptor of PAF (PAFR) is a heptahelical G-protein-coupled receptor. We have shown previously that upon agonist stimulation, PAFR internalised through clathrin-coated vesicles in an arrestin-dependent, but G-protein-coupling-independent manner. In the current report, we demonstrate that PAF stimulates Erk1/2 phosphorylation and: (1). dominant negative mutants of arrestins and dynamin do not influence Erk1/2 activation, (2). hypertonic conditions do not decrease the extent of Erk1/2 phosphorylation, (3). internalisation-deficient and/or G-protein-coupling-deficient mutants of PAFR activate Erk1/2 as efficiently as the wild-type PAFR, and (4). inhibition of epidermal growth factor receptor (EGFR) does not block Erk1/2 activation. Taken together, our results suggest that PAFR-mediated activation of mitogen-activated protein kinases Erk1/2 does not require receptor endocytosis, receptor tyrosine kinase transactivation or G-protein activation. In addition, our studies reveal that PAFR-mediated signals of G-protein activation, receptor internalisation and MAPK activation are differentially regulated by receptor structure and/or conformation.  相似文献   

9.
The cysteine-rich FGF receptor (CFR) is a 150-kD membrane-associated glycoprotein that specifically binds FGFs. CFR protein is not detectable at the cell surface and immunocytochemistry with anti-CFR antibodies demonstrates that CFR is concentrated in the Golgi apparatus. These data suggest CFR does not function as a plasma membrane FGF receptor. CFR expressed in chinese hamster ovary cells reduces the intracellular accumulation of exogenously applied FGF-1 and FGF-2. A mutant CFR lacking the juxtamembrane, transmembrane and intracellular domains is unable to alter intracellular FGF levels. Mutant CFR is detected throughout the cell, indicating that the domains absent in mutant CFR are required for appropriate subcellular localization and the regulation of intracellular FGF levels. Although the activation of plasma membrane receptors is necessary for cellular responses to FGFs, a requirement for intracellular FGF has also been proposed. The subcellular localization of CFR and its ability to regulate the levels of intracellular FGFs suggests that CFR may be involved in intracellular FGF trafficking and the regulation of cellular responses to FGFs. J. Cell. Physiol. 170:217–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
p94(fer) and p51(ferT) are two tyrosine kinases that share identical SH2 and kinase domains but differ in their N-terminal regions. To further explore the cellular functions of these two highly related tyrosine kinases, their subcellular distribution profiles and in vivo phosphorylation activity were followed using double immunofluorescence assay. When combined with immunoprecipitation analysis, this assay showed that p94(fer) can lead to the tyrosine phosphorylation and activation of Stat3 but not of Stat1 or Stat2. Native p94(fer) exerted this activity when residing in the cytoplasm. However, modified forms of p94(fer), which are constitutively nuclear, could also lead to the phosphorylation of Stat3. Endogenous Stat3 and p94(fer) co-immunoprecipitated with each other, thus proving the interaction of these two proteins in vivo. Unlike p94(fer), p51(ferT) did not induce the phosphorylation of Stat3 but led to the phosphorylation of other nuclear proteins. Replacing the unique 43-amino acid-long N-terminal tail of p51(ferT) with a parallel segment from the N-terminal tail of p94(fer) did not change the subcellular localization of p51(ferT) but enabled it to activate Stat3. Thus the different N-terminal sequences of p94(fer) and p51(ferT) can affect their ability to induce phosphorylation of Stat3 and most probably direct their different cellular functions.  相似文献   

11.
The Frizzled (Fz) protein in Drosophila is a bifunctional receptor that acts through a GTPase pathway in planar polarity signaling and as a receptor for Wingless (Wg) using the canonical Wnt pathway. We found that the ligand-binding domain (CRD) of Fz has an approximately 10-fold lower affinity for Wg than the CRD of DFz2, a Wg receptor without polarity activity. When the Fz CRD is replaced by the high-affinity CRD of DFz2, the resulting chimeric protein gains Wg signaling activity, yet also retains polarity signaling activity. In contrast, the reciprocal exchange of the Fz CRD onto DFz2 is not sufficient to confer polarity activity to DFz2. This suggests that Fz has an intrinsic capacity for polarity signaling and that high-affinity interaction with Wg couples it to the Wnt pathway.  相似文献   

12.
In the ligand/receptor interaction, the side chain phenyl group of phenylalanine (Phe) is involved in a so-called hydrophobic interaction, in which the Phe-phenyl group functions as a p element or merely as a hydrophobic element. The thrombin receptor-tethered ligand SFLLRNP consists of the Phe-2 residue essential for receptor activation. In order to explore the molecular characteristics of this Phe-2-phenyl group, a complete set of S/Phe/LLRNP peptides comprising six different difluorophenylalanine isomers [(F(2))Phe] was newly synthesized and assayed to evaluate their ability to induce the aggregation of human platelets. The assay results clarified several important structural elements to conclude that Phe-2-phenyl of S/Phe/LLRNP is in the edge-to-face CH/pi interaction with the receptor aromatic group, utilizing the Phe-phenyl edge along with adjacent benzene hydrogens at positions (2-3) or (5-6). It was also found that the fluorine atom at position 4 increases the acidity of the hydrogen mainly at its ortho position, resulting in a reinforcement of the CH/pi interaction and thus in an enhancement of biological activity. The H-->F replacement in the benzene ring was found to provide an effective structural examination to the Phe residue; i.e., to identify the hydrogens in the CH/pi interaction, and to strengthen the CH/pi interaction.  相似文献   

13.
Heparin-like glycosaminoglycans (HLGAGs) play a central role in the biological activity and signaling behavior of basic fibroblast growth factor (FGF-2). Recent studies, however, indicate that FGF-2 may be able to signal in the absence of HLGAG, raising the question of the nature of the role of HLGAG in FGF-2 signaling. In this study, we present a conceptual framework for FGF-2 signaling and derive a simple model from it that describes signaling via both HLGAG-independent and HLGAG-dependent pathways. The model is validated with F32 cell proliferation data using wild-type FGF-2, heparin binding mutants (K26A, K119A/R120A, K125A), and receptor binding mutants (Y103A, Y111A/W114A). In addition, this model can predict the cellular response of FGF-2 and its mutants as a function of FGF-2 and HLGAG concentration based on experimentally determined thermodynamic parameters. We show that FGF-2-mediated cellular response is a function of both FGF-2 and HLGAG concentrations and that a reduction of one of the components can be compensated for by an increase in the other to achieve the same measure of cellular response. Analysis of the mutant FGF-2 molecules show that reduction in heparin binding interactions and primary receptor site binding interactions can also be compensated for in the same manner. These results suggest a molecular mechanism that could be used by cells in physiological systems to modulate the FGF-2-mediated cellular response by controlling HLGAG expression.  相似文献   

14.
Stromal cell-derived FGF-7 binds and activates only the resident FGFR2IIIb in epithelial cells while FGF-1 and FGF-2 exhibit a broader interaction with multiple isoforms of FGFR. Here we report the structure of FGF-7 that has been solved to 3.1 A resolution by molecular replacement with the structure of a dual function chimera of FGF-7 and FGF-1 (FGF-7/1) which was resolved to 2.3 A. Comparison of the FGF-7 structure to that of FGF-1 and FGF-2 revealed the strongly conserved Calpha backbone among the three FGF polypeptides and the surface hydrophobic patch that forms the primary receptor-binding domain. In contrast, a decrease and dispersion of the positive surface charge density characterized the heparin-binding domain of FGF-7 defined by homology to that of FGF-1 and FGF-2 in complexes with heparin. A simple heparin hexasaccharide that cocrystallized with FGF-1 and FGF-2 and protected both against protease in solution failed to exhibit the same properties with FGF-7. In contrast to FGF-1 and FGF-2, protection of FGF-7 was enhanced by heparin oligosaccharides of increased length with those exhibiting a 3-O-sulfate being the most effective. Protection of FGF-7 required interaction with specifically the fraction of crude heparin retained on antithrombin affinity columns. Conversely, heparin enriched by affinity for immobilized FGF-7 exhibited anti-factor Xa activity similar to that purified on an antithrombin affinity matrix. In contrast, an FGF-1 affinity matrix enriched the fraction of crude heparin with low anti-factor Xa activity. The results provide a structural basis to suggest that the unique FGF-7 heparin-binding (HB) domain underlies a specific restriction in respect to composition and length of the heparan sulfate motif that may impact specificity of localization, stability, and trafficking of FGF-7 in the microenvironment, and formation and activation of the FGFR2IIIb kinase signaling complex in epithelial cells.  相似文献   

15.
16.
Ishihara  Masayuki 《Glycobiology》1994,4(6):817-824
Size- and structure-defined oligosaccharides from heparin, 2-O-desulphated(2-O-DS-) heparin, 6-O-desulphated (6-O-DS-) heparin, carboxy-reduced(CR-) heparin, and carboxyamidomethylsulphonated (AMS-) heparinwere utilized in characterizing the structural properties ofheparin to specifically bind to basic fibroblast growth factor(FGF-2) and to modulate the mitogenic activity of FGF-2 (Ishihara,M.et al., Glycobiology, 4, 451–458, 1994). The previousresults showed that both 2-O-sulphate groups and the negativecharge of the carboxy group in iduronate residues are requiredfor specific interaction with FGF-2, but the 6-O-sulphate groupsin N-sulphated glucosamine (GlcNS) residues do not influencethe interaction with FGF-2. In the present study, the same oligosaccharideswere fractionated on a FGF-1- or FGF-4-affinity column, andwere assessed as promotors of FGF-1- or FGF-4-induced proliferationof adrenocortical endothelial (ACE) cells and chlorate-treatedACE cells. The present results suggest that the smallest heparin-derivedoligosaccharide binding to these growth factors with the highestaffinity and promoting their mitogenic activities is a fullyN-sulphated decasaccharide enriched in 2-O- and 6-O- sulphateddisaccharide units. In contrast to our results with FGF-2, ahigh content of 6-O-sulphate groups in GlcNS residues is requiredfor specific interaction with FGF-1 and FGF-4. FGF-1 FGF-4 heparin heparan sulphate oligosaccharides  相似文献   

17.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor‐subtype present in the cell. Thus, ERα has a neuroprotective effect, while ERβ mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen‐induced apoptosis through ER‐β requires the expression of Fas‐ and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia‐secreted products induce the expression of FasL necessary to mediate estradiol–ERβ apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 64–78, 2000  相似文献   

18.
Binding of bacteria to beta 1 chain integrin receptors results in either bacterial adherence or uptake by cultured cells (Isberg, 1991). In this report we show that Staphylococcus aureus coated with high affinity ligands for the beta 1 chain integrin family can be internalized efficiently, whereas bacteria coated with low affinity ligands are poorly internalized. Overproduction of the alpha 5 beta 1 integrin increased the efficiency of bacterial internalization, indicating that the uptake efficiency is directly related to the level of expression of the receptor. By using latex beads or S. aureus coated with mAbs directed against the alpha 5 beta 1 integrin, a roughly semi-logarithmic correlation was observed between the affinity of the receptor-ligand interaction and the rate of bacterial internalization. Evidence is presented that high affinity binding of the bacterium allows the microorganism to compete efficiently with receptor-ligand interactions at the basolateral surface of the cell.  相似文献   

19.
20.
The common gamma-chain cytokine, IL-21, is produced by CD4(+) T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag alpha-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with alpha-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号