首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide (uptake and organification) when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03-0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor (EGF, 10(-9)M) and phorbol 12-myristate 13-acetate (PMA, 10(-8) M) completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.  相似文献   

2.
Using sheep thyroid cells in culture, we have studied the effects of thyroid stimulating hormone (TSH), epidermal growth factor (EGF) and the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) on the activity and expression of both thyroglobulin (Tg) and thyroid peroxidase (TPO) and on the ability of cells to trap and organify iodide. Using Western blotting techniques, we found that TSH increased the absolute cellular levels of Tg. The optimum TSH concentration for Tg mRNA production was between 0.1-1.0 mU/ml. Thyroglobulin mRNA levels were stimulated by TSH but detectable levels were also present in cultures grown in its absence containing cortisol, insulin, transferrin, somatostatin and glycyl-lysyl-histidyl acetate. Unlike Tg, TPO protein levels were found to be completely dependent upon TSH. A time course of TSH stimulation of TPO mRNA showed increases after 8 h of TSH stimulation, whereas induction of Tg mRNA by TSH was seen at 24 h. Iodide trapping and organification were also TSH-dependent processes, showing maximum activities at 300-500 muU/ml of TSH. The addition of 10 nM TPA caused a biphasic decrease in radiolabeled pertechnetate uptake, with complete inhibition being seen at 14 h. Inhibition of iodide organification occurred more rapidly. TPA and EGF (1 nM) reduced the amount of newly synthesized Tg in TSH-stimulated cells by 50% but the absolute amount of Tg within the cells was not markedly inhibited at these early times.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H(2)O(2) treatment were investigated. Myotubes were treated for 1 h with H(2)O(2) (1 mM). After this treatment, the H(2)O(2) was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and N(tau)-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H(2)O(2) treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H(2)O(2) treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

4.
A major reason for brain tissue vulnerability to oxidative damage is the high content of polyunsaturated fatty acids (PUFAs). Oligodendroglia-like OLN 93 cells lack PUFAs and are relatively insensitive to oxidative stress. When grown in serum-free defined medium in the presence of 0.1 mM docosahexaenoic acid (DHA; 22:6 n-3) for 3 days, OLN 93 cells release in the medium 2.6-fold more thiobarbituric acid-reactive substances (TBARS) after a 30-min exposure to 0.1 mM H2O2 and 50 microM Fe2+. Release of TBARS was substantially decreased by approximately 20 and 30% on coincubation with either 1 mM N-monomethylethanolamine or N,N'-dimethylethanolamine (dEa), respectively. The protective effect of dEa was concentration- and time-dependent and was still visible after dEa removal, suggesting a long-lasting mechanism of protection. After 24 h following H2O2-induced stress, cell death monitored by cell sorting showed 16% of the cells in the sub-G1 area, indicative of apoptotic cell death. DHA-supplemented cultures showed 35% cell death, whereas cosupplements with dEa reduced cell death to 12%, indicating cell rescue. Although the exact mechanism for this protection is not known, the nature of the polar head group and the degree of unsaturation may determine the ultimate resistance of nerve cells to oxidative stress.  相似文献   

5.
Dual oxidases (DUOX1 and DUOX2) are evolutionary conserved reduced nicotinamide adenine dinucleotide phosphate oxidases responsible for regulated hydrogen peroxide (H(2)O(2)) release of epithelial cells. Specific maturation factors (DUOXA1 and DUOXA2) are required for targeting of functional DUOX enzymes to the cell surface. Mutations in the single-copy Duox and Duoxa genes of invertebrates cause developmental defects with reduced survival, whereas knockdown in later life impairs intestinal epithelial immune homeostasis. In humans, mutations in both DUOX2 and DUOXA2 can cause congenital hypothyroidism with partial iodide organification defects compatible with a role of DUOX2-generated H(2)O(2) in driving thyroid peroxidase activity. The DUOX1/DUOXA1 system may account for residual iodide organification in patients with loss of DUOX2, but its physiological function is less clear. To provide a murine model recapitulating complete DUOX deficiency, we simultaneously targeted both Duoxa genes by homologous recombination. Knockout of Duoxa genes (Duoxa(-/-) mice) led to a maturation defect of DUOX proteins lacking Golgi processing of N-glycans and to loss of H(2)O(2) release from thyroid tissue. Postnatally, Duoxa(-/-) mice developed severe goitreous congenital hypothyroidism with undetectable serum T4 and maximally disinhibited TSH levels. Heterozygous mice had normal thyroid function parameters. (125)I uptake and discharge studies and probing of iodinated TG epitopes corroborated the iodide organification defect in Duoxa(-/-) mice. Duoxa(-/-) mice on continuous T4 replacement from P6 showed normal growth without an overt phenotype. Our results confirm in vivo the requirement of DUOXA for functional expression of DUOX-based reduced nicotinamide adenine dinucleotide phosphate oxidases and the role of DUOX isoenzymes as sole source of hormonogenic H(2)O(2).  相似文献   

6.
7.
In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other stresses like temperature, radiation, pressure, pH, etc....  相似文献   

8.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

9.
The cytotoxicity of saturated fatty acids has been implicated in the pathophysiology of cardiovascular disease, though their effects on cardiac myocytes are incompletely understood. We examined the effects of palmitate and the mono-unsaturated fatty acid oleate on neonatal rat ventricular myocyte cell biology. Palmitate (0.5mM) increased oxidative stress, as well as activation of the stress-associated protein kinases (SAPK) p38, Erk1/2, and JNK, following 18h and induced apoptosis in approximately 20% of cells after 24h. Neither antioxidants nor SAPK inhibitors prevented palmitate-induced apoptosis. Low concentrations of oleate (0.1mM) completely inhibited palmitate-induced oxidative stress, SAPK activation, and apoptosis. Increasing mitochondrial uptake of palmitate with l-carnitine decreased apoptosis, while decreasing uptake with the carnitine palmitoyl transferase-1 inhibitor perhexiline nearly doubled palmitate-induced apoptosis. These results support a model for palmitate-induced apoptosis, activation of SAPKs, and protein oxidative stress in myocytes that involves cytosolic accumulation of saturated fatty acids.  相似文献   

10.
Butyrate, a metabolite of gut flora-mediated fermentation of dietary fibre, was analysed for effects on expression of genes related to oxidative stress in primary human colon cells. An induction of detoxifying, antioxidative genes is expected to contribute to dietary chemoprevention. Cells were treated with butyrate (3.125-50 mM; 0.5-8 h), and kinetics of uptake and survival were measured. Gene expression was determined with a pathway-specific cDNA array after treating colon epithelium stripes with nontoxic doses of butyrate (10 mM, 12 h). Changes of hCOX-2, hSOD2 and hCAT expression were confirmed with real-time polymerase chain reaction (PCR) and by measuring catalase-enzyme activity. Primary colon cells consumed 1.5 and 0.5 mM butyrate after 4- and 12-h treatment, respectively. Cell viability was not changed by butyrate during 0.5-2-h treatment, whereas cell yields decreased after 1 h. Metabolic activity of remaining cells was either increased (4 h, 50 mM) or retained at 97% (8 h, 50 mM). Expression of hCAT was enhanced, whereas hCOX-2 and hSOD2 were lowered according to both array and real-time PCR analysis. An enhanced catalase-enzyme activity was detected after 2 h butyrate treatment. Healthy nontransformed colon cells well tolerated butyrate (50 mM, 2 h), and lower concentrations (10 mM, 12 h) modulated cyclooxygenase 2 (COX-2) and catalase genes. This points to a dual role of chemoprotection, since less COX-2 could reduce inflammatory processes, whereas more catalase improves detoxification of hydrogen peroxide (H(2)O(2)), a compound of oxidative stress. Changes of this type could reduce damaging effects by oxidants and protect cells from initiation.  相似文献   

11.
Davies KJ 《IUBMB life》1999,48(1):41-47
Proliferating mammalian cells exhibit a broad spectrum of responses to oxidative stress, depending on the stress level encountered. Very low levels of hydrogen peroxide, e.g., 3 to 15 microM, or 0.1 to 0.5 micromol/10(7) cells, cause a significant mitogenic response, 25% to 45 % growth stimulation. Greater concentrations of H2O2, 120 to 150 microM, or 2 to 5 micromol/10(7) cells, cause a temporary growth arrest that appears to protect cells from excess energy use and DNA damage. After 4-6 h of temporary growth arrest, many cells will exhibit up to a 40-fold transient adaptive response in which genes for oxidant protection and damage repair are preferentially expressed. After 18 h of H2O2 adaptation (including the 4-6 h of temporary growth arrest) cells exhibit maximal protection against oxidative stress. The H2O2 originally added is metabolized within 30-40 min, and if no more is added the cells will gradually de-adapt, so that by 36 h after the initial H2O2 stimulus they have returned to their original level of H2O2 sensitivity. At H2O2 concentrations of 250 to 400 microM, or 9 to 14 micromol/10(7) cells, mammalian fibroblasts are not able to adapt but instead enter a permanently growth-arrested state in which they appear to perform most normal cell functions but never divide again. This state of permanent growth arrest has often been confused with cell death in toxicity studies relying solely on cell proliferation assays as measures of viability. If the oxidative stress level is further increased to 0.5 to 1.0 mM H2O2, or 15 to 30 micromol/10(7) cells, apoptosis results. This oxidative stress-induced apoptosis involves nuclear condensation, loss of mitochondrial transmembrane potential, degradation/down-regulation of mitochondrial mRNAs and rRNAs, and degradation/laddering of both nuclear and mitochondrial DNA. At very high H2O2 concentrations of 5.0 to 10.0 mM, or 150 to 300 micromol/10(7) cells and above, cell membranes disintegrate, proteins and nucleic acids denature, and necrosis swiftly follows. Cultured cells grown in 20% oxygen are essentially preadapted or preselected to survive under conditions of oxidative stress. If cells are instead grown in 3% oxygen, much closer to physiological cellular levels, they are more sensitive to an oxidative challenge but exhibit far less accumulated oxidant damage. This broad spectrum of cellular responses to oxidant stress, depending on the amount of oxidant applied and the concentration of oxygen in the cell culture system, provides for a new paradigm of cellular oxidative stress responses.  相似文献   

12.
Aluminum-induced cell death in root-tip cells of barley   总被引:1,自引:0,他引:1  
Aluminum-induced cell death was investigated in root-tip cells of barley (Hordeum vulgare). The growth of roots in 0.1-50 mM Al treatments was inhibited after 8 h treatments, and could not be recovered after 24 h recovery culture without Al. Viable detection with fluorescein diacetate-propidium iodide (FDA-PI) staining shows that most of the root-tip cells have lost viability. These results suggest that the irreversible inhibition of root growth after 8 h Al treatments or 24 h recovery culture is mainly caused by cell death. DNA ladders occurred in root tips only after 8 h Al treatments (0.1-1.0 mM), but no apoptotic bodies in root tips were observed. Thus, the cell death caused by Al stress is likely to be Al-induced programmed cell death (PCD). The reactive oxygen species (ROS) in root-tip cells measured by ultraweak luminescence indicated that the oxidation status in root-tip cells basically ceased after exposure to 10-50 mM Al for 24 h, but was very violent in the root-tip cells treated with 0.1-1.0 mM for 24 h. Exposure to 0.1-1.0 mM Al for 3-12 h led to ROS burst. Therefore, our results suggest that 0.1-1.0 mM Al treatments for 8 h induce cell death (Al-induced PCD) possibly via a ROS-activated signal transduction pathway, whereas 10-50 mM Al treatments may cause necrosis in the root-tip cells. These results have an important role for further studies on the mechanism of Al toxicity in plants.  相似文献   

13.
Signaling pathways involved in oxidative stress-induced inhibition of osteoblast differentiation are not known. We showed in this report that H(2)O(2) (0.1-0.2mM)-induced oxidative stress suppressed the osteoblastic differentiation process of primary rabbit bone marrow stromal cells (BMSC) and calvarial osteoblasts, manifested by a reduction of differentiation markers including alkaline phosphatase (ALP), type I collagen, colony-forming unit-osteoprogenitor (CFU-O) formation, and nuclear phosphorylation of Runx2. H(2)O(2) treatment stimulated phospholipase C-gamma1 (PLC-gamma1), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signaling but inhibited p38 mitogen-activated protein kinase (MAPK) activation. In the presence of 20microM PD98059 or 50microM caffeic acid phenethyl ester (CAPE), specific inhibitor for ERKs or NF-kappaB, respectively, could significantly reverse the decrease of above-mentioned osteoblastic differentiation markers elicited by H(2)O(2) (0.1mM). Furthermore, PD98059 also suppressed H(2)O(2)-stimulated NF-kappaB signaling in this process. These data suggest that ERK and ERK-dependent NF-kappaB activation is required for oxidative stress-induced inhibition of osteoblastic differentiation in rabbit BMSC and calvarial osteoblasts.  相似文献   

14.
The dual role of glutathione as a transducer of S status (A.G. Lappartient and B. Touraine [1996] Plant Physiol 111: 147-157) and as an antioxidant was examined by comparing the effects of S deprivation, glutathione feeding, and H2O2 (oxidative stress) on SO42- uptake and ATP sulfurylase activity in roots of intact canola (Brassica napus L.). ATP sulfurylase activity increased and SO42- uptake rate severely decreased in roots exposed to 10 mM H2O2, whereas both increased in S-starved plants. In split-root experiments, an oxidative stress response was induced in roots remote from H2O2 exposure, as revealed by changes in the reduced glutathione (GSH) level and the GSH/oxidized glutathione (GSSG) ratio, but there was only a small decrease in SO42- uptake rate and no effect on ATP sulfurylase activity. Feeding plants with GSH increased GSH, but did not affect the GSH/GSSG ratio, and both ATP sulfurylase activity and SO42- uptake were inhibited. The responses of the H2O2-scavenging enzymes ascorbate peroxidase and glutathione reductase to S starvation, GSH treatment, and H2O2 treatment were not to glutathione-mediated S demand regulatory process. We conclude that the regulation of ATP sulfurylase activity and SO42- uptake by S demand is related to GSH rather than to the GSH/GSSG ratio, and is distinct from the oxidative stress response.  相似文献   

15.
We examined the hypothesis that sodium nitroprusside (SNP) produces cell death in cardiomyocytes through generation of H(2)O(2). Embryonic chick cardiomyocytes in culture were treated with SNP, and cell viability was assessed by trypan blue, MTT assay, and fluorescent activated cell sorting (FACS) analysis. SNP for 24 h induced a significant (P < 0.001) dose-dependent loss of cell viability. On MTT assay, the half-maximal effective concentration was 0.53 mM (confidence interval 0.45-0.59 mM). SNP-treated cardiomyocytes displayed characteristic microscopic features of apoptosis: reduced cell size, nuclear disintegration, and membrane bleb formation. FACS analysis demonstrated SNP-induced apoptosis as well as cell changes consistent with necrosis. The proportion of cells with nuclear changes of apoptosis, identified by propidium iodide (PI) staining of permeabilized cells, increased significantly (P < 0.05) after 0.5 mM SNP for 24 h. The proportion of apoptotic cells, characterized by dual staining of intact cardiomyocytes with fluorescein diacetate and PI, was significantly (P < 0.05) increased after treatment with 0.5 mM SNP for 24 h. SNP metabolism and NO production was suggested by the significant (P < 0.05) increase in nitrite generation in the media with 0.5 mM SNP compared with control. SNP-mediated H(2)O(2) production was implicated in the mechanism of SNP-induced cell death. First, SNP produced a significant (P < 0.05) increase in H(2)O(2) detected in the media after 6 or 24 h of SNP treatment. Second, catalase completely blocked the reduction of cell viability induced by 0.1 mM SNP and significantly (P < 0.05) blunted the effect of 0.5 mM SNP. In contrast, the iron chelator deferoxamine did not alter SNP-induced loss of cell viability. FACS analysis showed that the combination of low concentrations of H(2)O(2) (10(-8) M) that did not alter cell viability augmented SNP-induced apoptosis. In contrast, the amount of necrotic cell death was unchanged by the combination of H(2)O(2) and SNP. H(2)O(2) plus SNP produced a dramatic alteration in cell structure with greater membrane bleb formation, shrunken cells, and more intense cytosolic acridine orange staining and nuclear fragmentation than either agent alone. These data indicate the vulnerability of cardiomyocytes to SNP and suggest the involvement of H(2)O(2) in the pathogenesis of SNP-induced cardiomyocyte cell death. Establishing apoptosis as a component of the type of cell death induced by SNP permitted the recognition that SNP-induced apoptosis was increased by chronic treatment with low (subtoxic) concentrations of H(2)O(2).  相似文献   

16.
Jun HY  Yao K  Ma J  Li HW  Tang XJ 《Molekuliarnaia biologiia》2007,41(6):994-1001
Oxidative stimulation induced by hydrogen peroxide (H2O2) on human epithelial cells (HLECs) was performed to observe the effects on cell viability, caveolin expression, and cholesterol depletion in HLECs caused by methyl-beta-cyclodextrin (MbetaCD) was also studied. SRA01/04 HLECs were exposed to H2O2 or MbetaCD of various concentrations and durations. We used a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to measure the effect of H2O2 on the viability of SRA01/04 HLECs. The distributions of caveolins after oxidative stimulation were probed by fluorescence microscopy and laser scanning confocal microscopy. Immunoblotting was performed to analyze alterations of caveolins expression. We observed that the viability of SRA01/04 HLECs under 0.1 mM H2O2 for 10 min or longer was significantly reduced (*p < 0.05, F = 11.63). Laser scanning microscopy showed immunofluorescent caveolins in SRA01/04 HLECs under 0.1 mM H2O2 for 10 min or longer, caveolins were largely confined to intracellular domains. Western blots showed both membrane and total caveolin protein (22 kDa) levels in SRA01/04 HLECs treated with 0.1, 0.2, 0.5 or 1.0 mM H2O2 for 30 min were significantly reduced, compared with the untreated (*p < 0.05, F = 6.149, or *p < 0.05, F = 14.489 respectively). In addition, the membrane and total caveolin protein level after treated with 0.1 mM (*p < 0.05, F = 6.843, or *p < 0.05, F = 7.944 respectively) H2O2 for different durations also down regulated. Fluorescence microscopy also showed that phosphorylated caveolin-1 was distributed near the focal adhesions of the cells. This study concludes that the responses of HLECs to oxidative stress may include down regulation of caveolin and phosphorylation of caveolin-1 on Tyr14, and that MbetaCD also down regulates caveolin while depleting cholesterol in HLECs.  相似文献   

17.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

18.
We examined whether superoxide (O(2)(-)) is produced as a precursor of hydrogen peroxide (H(2)O(2)) in cultured thyroid cells using the cytochrome c method and the electron paramagnetic resonance (EPR) method. No O(2)(-) or its related radicals was detected in thyroid cells under the physiological condition. The presence of quinone, 2,3-dimethoxy-l-naphthoquinone (DMNQ), or 2-methyl-1, 4-naphthoquinone (menadione), in the medium produced O(2)(-) and hydroxyl radicals (OH*); the amount of H(2)O(2) generation was also increased. Incubation of follicles with DMNQ or menadione inhibited iodine organification (a step of thyroid hormone formation) and its catalytic enzyme, thyroid peroxidase (TPO). This inhibition should be caused by reactive oxygen species because the two quinones, particularly DMNQ, exert their effect through the generation of reactive oxygen species. It is speculated that the site-specific inactivation of TPO might have occurred at the heme-linked histidine residue of the TPO molecule, a critical amino acid for enzyme activity because OH* (vicious free radicals) can be formed at the iron-linked amino acid. TPO mRNA level and electrophoretic mobility of TPO were not inhibited by quinones. Our study suggests that thyroid H(2)O(2) is produced by divalent reduction of oxygen without O(2)(-) generation. If thyroid cells happen to be exposed to significant amount of reactive oxygen species, TPO and subsequent thyroid hormone formation are inhibited.  相似文献   

19.
Stress hormones and pro-inflammatory cytokines are putative signals triggering increased energy expenditure or "hypermetabolism" commonly observed in inflammatory states. Cytokines also cause the release of reactive oxidants by immune cells resident in tissues in vivo. Therefore, we hypothesized that oxidative stress plays a role in the induction of hypermetabolism. We examined the effect of glucagon (1.0 nM), a catabolic stress hormone, and the oxidant H(2)O(2) (1.0 mM) on the metabolism of stable hepatocyte cultures for 4 days. Combined H(2)O(2) and glucagon treatment, but not H(2)O(2) or glucagon used alone, increased the hepatocyte oxygen uptake rate 25% above control untreated cells after a lag-time of 72 h. The same treatment also increased the expression of mitochondrial uncoupling protein-2 (UCP2). These effects were significantly inhibited by the antioxidant N-acetylcysteine (5mM) and the pentose phosphate pathway (PPP) inhibitor dehydroepianderosterone (200 microM). Glucagon alone induced urea synthesis and H(2)O(2) alone induced the PPP. These findings show, for the first time, that oxidative stress, in combination with glucagon, increases metabolic energy expenditure in cultured cells, and that this effect may be mediated by UCP-2. Furthermore, the results implicate the PPP in the induction of the hypermetabolic response.  相似文献   

20.
Concentration of thyroid hormones in the serum of the rats after 14-day injections of potassium iodide (1, 3, 10, 100, and 500 physiological daily doses) did not differ from the control values. Excessive administration of potassium iodide increased the total iodide content in the rat thyroid tissue by 60–121% (35–108% and 94–128% for the protein-bound and free iodide, respectively), indicating the activation of the uptake and organification of iodide. The long-term injection of both low and high doses of potassium iodide increased the activity of catalase by 8–18% and SOD by 33–50% and enhanced the level of toxic LPO products reacting with thiobarbituric acid by 15–38%. It is suggested that reactive oxygen species and the excessive iodination of proteins (particularly thyroglobulin) induced by the long-term administration of high doses of potassium iodide can play an important role in the development of thyroid dysfunctions and autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号