首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
2.
3.
Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants.  相似文献   

4.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

5.
We have taken advantage of the similarity between human and yeast (Saccharomyces cerevisiae) mitochondrial tRNALeu(UUR), and of the possibility of transforming yeast mitochondria, to construct yeast mitochondrial mutations in the gene encoding tRNALeu(UUR) equivalent to the human A3243G, C3256T and T3291C mutations that have been found in patients with the neurodegenerative disease MELAS (for mitochondrial 'myopathy, encephalopathy, lactic acidosis and stroke-like episodes'). The resulting yeast cells (bearing the equivalent mutations A14G, C26T and T69C) were defective for growth on respiratory substrates, exhibited an abnormal mitochondrial morphology, and accumulated mitochondrial DNA deletions at a very high rate, a trait characteristic of severe mitochondrial defects in protein synthesis. This effect was specific at least in the pathogenic mutation T69C, because when we introduced A or G instead of C, the respiratory defect was absent or very mild. All defective phenotypes returned to normal when the mutant cells were transformed by multicopy plasmids carrying the gene encoding the mitochondrial elongation factor EF-Tu. The ability to create and analyse such mutated strains and to select correcting genes should make yeast a good model for the study of tRNAs and their interacting partners and a practical tool for the study of pathological mutations and of tRNA sequence polymorphisms.  相似文献   

6.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

7.
8.
The mitochondrial tRNA(Leu)(UUR) (R = A or G) gene possesses several hot spots for pathogenic mutations. A point mutation at nucleotide position 3243 or 3271 is associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes and maternally inherited diabetes with deafness. Detailed studies on two tRNAs(Leu)(UUR) with the 3243 or 3271 mutation revealed some common characteristics in cybrid cells: (i) a decreased life span, resulting in a 70% decrease in the amounts of the tRNAs in the steady state, (ii) a slight decrease in the ratios of aminoacyl-tRNAs(Leu)(UUR) versus uncharged tRNAs(Leu)(UUR), and (iii) accurate aminoacylation with leucine without any misacylation. As a marked result, both of the mutant tRNA molecules were deficient in a modification of uridine that occurs in the normal tRNA(Leu)(UUR) at the first position of the anticodon. The lack of this modification may lead to the mistranslation of leucine into non-cognate phenylalanine codons by mutant tRNAs(Leu)(UUR), according to the mitochondrial wobble rule, and/or a decrease in the rate of mitochondrial protein synthesis. This finding could explain why two different mutations (3243 and 3271) manifest indistinguishable clinical features.  相似文献   

9.
The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem. The introduction of a compensatory A3261G mutation reintroduces base pairing at this site and restores the structure of this domain. In fact, the anticodon stem of the A3261G/U3271C mutant appears more structured than wild-type (WT) hs mt tRNA(Leu(UUR)), indicating that the entirely AU stem of the native tRNA is intrinsically weak. The results of the chemical probing experiments are mirrored in the aminoacylation activities of the mutants. The U3271C substitution decreases aminoacylation reactivity relative to the WT tRNA due to an increase in K(m) for the pathogenic mutant. The binding defect is a direct result of the structural disruption caused by the pathogenic mutation, as the introduction of the stabilizing compensatory mutation restores aminoacylation activity. Other examples of functional defects associated with the disruption of weak domains in hs mt tRNAs have been reported, indicating that the effects of pathogenic mutations may be amplified by the fragile structures that are characteristic of this class of tRNAs.  相似文献   

10.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations.  相似文献   

11.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

12.
We report the identification and characterization of eight yeast mitochondrial tRNA mutants, located in mitochondrial tRNA(Gln), tRNA(Arg2), tRNA(Ile), tRNA(His), and tRNA(Cys), the respiratory phenotypes of which exhibit various degrees of deficiency. The mutations consist in single-base substitutions, insertions, or deletions, and are distributed all over the tRNA sequence and structure. To identify the features responsible for the defective phenotypes, we analyzed the effect of the different mutations on the electrophoretic mobility and efficiency of acylation of the mutated tRNAs in comparison with the respective wild-type molecules. Five of the studied mutations determine both conformational changes and defective acylation, while two have neither or limited effect. However, variations in structure and acylation are not necessarily correlated; the remaining mutation affects the tRNA conformation, but not its acylation properties. Analysis of tRNA structures and of mitochondrial and cytoplasmic yeast tRNA sequences allowed us to propose explanations for the observed defects, which can be ascribed to either the loss of identity nucleotides or, more often, of specific secondary and/or tertiary interactions that are largely conserved in native mitochondrial and cytoplasmic tRNAs.  相似文献   

13.
线粒体tRNA基因突变是导致感音神经性耳聋的原因之一.有些tRNA突变可直接造成耳聋的发生,称之为原发突变.如tRNALeu(UUR) A3243G等突变与综合征型耳聋相关,而tRNASer(UCN) T7511C等突变则与非综合征型耳聋相关.此外,继发突变如tRNAThr G15927A等突变则对原发突变起协同作用,影响耳聋的表型表达.这些突变可引起tRNA二级结构改变,从而影响线粒体蛋白质合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍可导致耳聋的发生.主要讨论与耳聋相关的线粒体tRNA突变及其致聋机理.  相似文献   

14.
A series of disease-related mutations are known to affect the hs mt tRNA(Leu(UUR)) gene, and the molecular-level properties of this tRNA may underlie the effects of pathogenic sequence changes. A combinatorial approach has been used to explore the importance of the D, TPsiC, and anticodon loops of hs mt tRNA(Leu(UUR)) in the structure and function of this molecule. A tRNA library was constructed with 20 randomized nucleotides in the loop regions of hs mt tRNA(Leu(UUR)), and tRNA variants that were aminoacylated by hs mt LeuRS were isolated using an in vitro selection approach. Analysis of 26 selected sequences revealed that a stabilized anticodon stem significantly enhances aminoacylation activity. However, anticodon loop nucleotides were not conserved in the active sequences, indicating that this region of hs mt tRNA(Leu(UUR)) is not involved in recognition by LeuRS. Within the D and TPsiC loops, only two nucleotides conserved their identities, while new sequences were selected that likely mediate interloop interactions. The results indicate that hs mt tRNA(Leu(UUR)), which is known to have structurally weak D and anticodon stems, benefits functionally from the introduction of stabilizing interactions. However, the locations of individual nucleotides that govern discrimination of this tRNA by hs mt LeuRS still remain obscure.  相似文献   

15.
赵晶  季敬璋  汪大望  张洁  吴惠洁  吕建新 《遗传》2006,28(10):1206-1212
为了解浙江省温州地区2型糖尿病病人中线粒体DNA tRNALeu (UUR)基因A3243G及NADH 脱氢酶亚单位1 (ND1)基因G3316A位点突变的发生频率, 并探讨突变与2型糖尿病主要临床指标出现的相关性。对随机收集的无血缘关系的244例温州地区2型糖尿病患者进行研究, 同时选择156例无 DM 家族史的糖耐量正常者作为对照组, 用聚合酶链反应及限制性片段长度多态性分析技术进行点突变筛选, 筛选到的异质性突变样本经T-A克隆后再作测序和变性高效液相色谱(DHPLC)确证。结果在244例的2型糖尿病患者中检出A3243G突变1例(0.410%), 156例对照者中未检出该突变, 突变发生率在两组间差异无统计学意义(P>0.05); 2型糖尿病患者中检出G3316A突变4例(1.639%), 156例对照者中检出突变2例(1. 282%), 突变发生率在两组间差异无统计学意义(P>0.05)。结果表明线粒 体tRNALeu (UUR) 基因A3243G突变在浙江温州2型糖尿病人群中发生频率低, 不是温州人群中2型糖尿病的常见病因。线粒体ND1基因G3316A突变在糖尿病人群中的发生频率也较低, 且在正常人群中也有出现, 可能仅为人群中线粒体DNA的基因多态性。  相似文献   

16.

Background and objective

Mutations of mitochondrial DNA are associated with diabetes mellitus (DM). The present case–control study aimed to investigate the mutations of mitochondrial DNA in DM patients of Chinese Han ethnicity.

Methods and results

A total of 770 DM patients and 309 healthy control individuals were enrolled. The mitochondrial DNA was extracted from blood cells and analyzed by the polymerase chain reaction–restriction fragment length polymorphism assay. In the diabetes group, there were 13 (1.69%) individuals carrying the mt3243 A → G mutation while none of the healthy control had this mutation. Though the 14709, 3316, 3394, and 12026 mutation variants were identified in 9, 17, 18 and 28 in DM patients respectively, there were no significant differences compared with control group. And the 3256, 8296, 8344, 8363, 3426 and 12258 mutations were not detected in either group. In the diabetes group, two double mutations were identified: A3243G+T3394C and A3243G+A12026G.

Conclusion

Our data suggested that mitochondrial gene tRNALeu(UUR) 3243 A → G mutation may be one risk of prevalence of DM and associated with worse clinical status in Chinese Han population.  相似文献   

17.
18.
19.
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.  相似文献   

20.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号