首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Alternative splicing of the agrin mRNA controls the ability of agrin protein to induce the clustering of acetylcholine receptors at the neuromuscular junction. Using a transfectable reporter gene, we show that one agrin alternative exon, the Y exon, is controlled by a regulatory sequence in the downstream intron. Portions of this intronic sequence have the properties of a splicing enhancer that can activate splicing of a heterologous exon when placed in the intron downstream. The regulatory region is complex in structure, containing several different elements capable of activating splicing. Individual enhancing elements differ in their cell-type specificity, and are not apparently synergistic, as two elements together induce lower splicing than either does separately. Essential nucleotides within these regulatory elements were identified by scanning mutagenesis across the active region. Interestingly, the elements do not appear similar to known intronic splicing enhancer elements. This Y exon enhancer and its components take part in an apparent combinatorial system of control where multiple regulatory elements of varying activity combine to produce a precisely cell-specific exon inclusion. As a major contributor to the regulation of the Y exon, the enhancer ultimately controls the properties of the agrin protein.  相似文献   

3.
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.  相似文献   

4.
Using hybrid minigene experiments, we have investigated the role of the promoter architecture on the regulation of two alternative spliced exons, cystic fibrosis transmembrane regulator (CFTR) exon 9 and fibronectin extra domain-A (EDB). A specific alternative splicing pattern corresponded to each analyzed promoter. Promoter-dependent sensitivity to cotransfected regulatory splicing factor SF2/ASF was observed only for the CFTR exon 9, whereas that of the EDB was refractory to promoter-mediated regulation. Deletion in the CFTR minigene of the downstream intronic splicing silencer element binding SF2/ASF abolished the specific promoter-mediated response to this splicing factor. A systematic analysis of the regulatory cis-acting elements showed that in the presence of suboptimal splice sites or by deletion of exonic enhancer elements the promoter-dependent sensitivity to splicing factor-mediated inhibition was lost. However, the basal regulatory effect of each promoter was preserved. The complex relationships between the promoter-dependent sensitivity to SF2 modulated by the exon 9 definition suggest a kinetic model of promoter-dependent alternative splicing regulation that possibly involves differential RNA polymerase II elongation.  相似文献   

5.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

6.
7.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

8.
An important level at which the expression of programmed cell death (PCD) genes is regulated is alternative splicing. Our previous work identified an intronic splicing regulatory element in caspase-2 (casp-2) gene. This 100-nucleotide intronic element, In100, consists of an upstream region containing a decoy 3' splice site and a downstream region containing binding sites for splicing repressor PTB. Based on the signal of In100 element in casp-2, we have detected the In100-like sequences as a family of sequence elements associated with alternative splicing in the human genome by using computational and experimental approaches. A survey of human genome reveals the presence of more than four thousand In100-like elements in 2757 genes. These In100-like elements tend to locate more frequent in intronic regions than exonic regions. EST analyses indicate that the presence of In100-like elements correlates with the skipping of their immediate upstream exons, with 526 genes showing exon skipping in such a manner. In addition, In100-like elements are found in several human caspase genes near exons encoding the caspase active domain. RT-PCR experiments show that these caspase genes indeed undergo alternative splicing in a pattern predicted to affect their functional activity. Together, these results suggest that the In100-like elements represent a family of intronic signals for alternative splicing in the human genome.  相似文献   

9.
10.
Combinatorial control of a neuron-specific exon.   总被引:4,自引:1,他引:3       下载免费PDF全文
The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing.  相似文献   

11.
Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5' splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.  相似文献   

12.
13.
In monosymptomatic forms of cystic fibrosis such as congenital bilateral absence of vas deferens, variations in the TG(m) and T(n) polymorphic repeats at the 3' end of intron 8 of the cystic fibrosis transmembrane regulator (CFTR) gene are associated with the alternative splicing of exon 9, which results in a nonfunctional CFTR protein. Using a minigene model system, we have previously shown a direct relationship between the TG(m)T(n) polymorphism and exon 9 splicing. We have now evaluated the role of splicing factors in the regulation of the alternative splicing of this exon. Serine-arginine-rich proteins and the heterogeneous nuclear ribonucleoprotein A1 induced exon skipping in the human gene but not in its mouse counterpart. The effect of these proteins on exon 9 exclusion was strictly dependent on the composition of the TG(m) and T(n) polymorphic repeats. The comparative and functional analysis of the human and mouse CFTR genes showed that a region of about 150 nucleotides, present only in the human intron 9, mediates the exon 9 splicing inhibition in association with exonic regulatory elements. This region, defined as the CFTR exon 9 intronic splicing silencer, is a target for serine-arginine-rich protein interactions. Thus, the nonevolutionary conserved CFTR exon 9 alternative splicing is modulated by the TG(m) and T(n) polymorphism at the 3' splice region, enhancer and silencer exonic elements, and the intronic splicing silencer in the proximal 5' intronic region. Tissue levels and individual variability of splicing factors would determine the penetrance of the TG(m)T(n) locus in monosymptomatic forms of cystic fibrosis.  相似文献   

14.
15.
16.
Synthetic regulatory devices are key components for the development of complex biological systems and the reprogramming of cellular functions and networks. Here we describe the selection of tetracycline inducible hammerhead ribozymes. A tetracycline aptamer was fused to the full-length hammerhead ribozyme via a variable linker region. 11 rounds of in vitro selection were applied to isolate linker sequences that mediate tetracycline dependent hammerhead cleavage. We identified allosteric ribozymes that cleave in the presence of 1 μM tetracycline as fast as the full-length ribozyme whereas cleavage is inhibited up to 333-fold in the absence of tetracycline. Reporter gene assays indicate that the allosteric ribozymes can be employed to control gene expression in yeast.  相似文献   

17.
Although multiple regulatory elements and protein factors are known to regulate the non-neuronal pathway of alternative processing of the calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA, the mechanisms controlling the neuron-specific pathway have remained elusive. Here we report the identification of Fox-1 and Fox-2 proteins as novel regulators that mediate the neuron-specific splicing pattern. Fox-1 and Fox-2 proteins function to repress exon 4 inclusion, and this effect depends on two UGCAUG elements surrounding the 3' splice site of the calcitonin-specific exon 4. In neuron-like cells, mutation of a subset of UGCAUG elements promotes the non-neuronal pattern in which exon 4 is included. In HeLa cells, overexpression of Fox-1 or Fox-2 protein decreases exon 4 inclusion. Fox-1 and Fox-2 proteins interact with the UGCAUG elements specifically and regulate splicing by blocking U2AF(65) binding to the 3' splice site upstream of exon 4. We further investigated the inter-relationship between the UGCAUG silencer elements and the previously identified intronic and exonic splicing regulatory elements and found that exon 4 is regulated by an intricate balance of positive and negative regulation. These results define a critical role for Fox-1 and Fox-2 proteins in exon 4 inclusion of calcitonin/CGRP pre-mRNA and establish a regulatory network that controls the fate of exon 4.  相似文献   

18.
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.  相似文献   

19.
β-site APP cleaving enzyme 1 (BACE1) is the transmembrane aspartyl protease that catalyzes the first cleavage step during proteolysis of the β-amyloid precursor protein, a process involved in the pathogenesis of Alzheimer disease. BACE1 pre-mRNA undergoes complex alternative splicing, and cis -acting elements important for its regulation have not been identified. We constructed and compared several BACE1 minigenes and found that BACE1 sequence from exon 3 through exon 5 was required for minigenes to undergo correct splicing. Minigene splicing was validated by showing specific splicing inhibition upon splice site mutation. Furthermore, we showed that mutation of the minigene at a predicted exonic splicing enhancer in exon 4 of BACE1 increased exon 4 skipping. Therefore, we have for the first time found evidence of a regulatory site involved in BACE1 alternative splicing, and these data indicate that minor sequence changes can dramatically alter BACE1 alternative splicing.  相似文献   

20.
Alternative splicing is a hallmark of glycoprotein hormone receptor gene regulation, but its molecular mechanism is unknown. The LH receptor (LHR) gene possesses 11 exons, but exon 10 is constitutively skipped in the New World monkey lineage (LHR type 2), whereas it is constitutively spliced in the human (LHR type 1). This study identifies the regulatory elements of exon 10 usage. Sequencing of genomic marmoset DNA revealed that the cryptic LHR exon 10 is highly homologous to exon 10 from other species and displays intact splice sites. Functional studies using a minigene approach excluded the contribution of intronic, marmoset-specific long interspersed nucleotide-1 elements to exon 10 skipping. Sequencing of the genomic regions surrounding exon 10 from several primate lineages, sequence comparisons including the human and mouse LHR gene, revealed the presence of unique nucleotides at 3'-intronic position -19 and -10 and at position +26 within exon 10 of the marmoset LHR. Exon trap experiments and in vitro mutagenesis of these nucleotides resulted in the identification of a composite regulatory element of splicing consisting of cis-acting elements represented by two polypyrimidine tracts and a trans-acting element within exon 10, which affect the secondary RNA structure. Changes within this complex resulted either in constitutive exon inclusion, constitutive skipping, or alternative splicing of exon 10. This work delineates the molecular pathway leading to intronization of exon 10 in the LHR type 2 and reveals, for the first time, the essential function of regulatory and structural elements involved in glycoprotein hormone receptor splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号