首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

2.
River oases at the southern fringe of the Taklamakan desert in NW China are surrounded by belts of spontaneous vegetation that protect the oases from sand drift. As an important source of forage, fuel and construction wood, this foreland vegetation is also a component part of the agricultural system of the oases but has been, and still is, destroyed through overuse. Within a broader study that aimed to provide a basis for a sustainable management of this foreland vegetation, biomass and production were studied in four vegetation types dominated either by Alhagi sparsifolia, Calligonum caput-medusae, Populus euphratica, or Tamarix ramosissima that were thought to occur under different regimes of natural flooding in the foreland of Qira (Cele) oasis, Xinjiang, NW China. Shoot biomass components were closely correlated to basal area (Calligonum, Populus, Tamarix) or shrub volume and projection area (Alhagi), enabling non-destructive estimation of stand biomass from shoot diameters or shrub dimensions with sufficient precision using allometric regression equations. Relationships between shoot basal area and biomass of the woody species (Calligonum, Populus and Tamarix) agreed with predictions by a theoretical model of plant vascular systems, suggesting that they are determined by hydraulic and mechanical requirements for shoot architecture. Average aboveground biomass densities of typical stands in late summer were 2.97 Mg/ha in Alhagi, 3.6 Mg/ha in a row plantation and 10.9 Mg/ha in homogenous stands of Calligonum, 22–29 Mg/ha in 22 year-old Populus forests and 1.9–3.1 Mg/ha in Tamarix-dominated vegetation. Annual aboveground production including wood and assimilation organs ranged from 2.11 to 11.3 Mg/ha in plantations of Calligonum, 3.17 to 6.12 Mg/ha in Populus, and 1.55 to 1.74 Mg/ha (based on total ground area) or 3.10 to 7.15 Mg/ha (in homogenous stands) in Tamarix. Production of Alhagi is equal to peak biomass. A thinning treatment simulating use by the local population enhanced productivity of Calligonum, Populus and Tamarix. A complete harvest of Alhagi in late August decreased production in the following year. An artificial flood irrigation treatment did not sufficiently increase soil water content except in the uppermost layer and had no clear beneficial effect on growth of the four species and even a negative effect on Alhagi, which was due to increased competition from annual species. As biomass and production with or without artificial irrigation were much higher than values expected for rain-fed desert vegetation at a mean annual precipitation of 35 mm, it is concluded that the existence of all vegetation types studied is probably based on permanent access to groundwater and that natural floods or precipitation do not contribute to their water supply. The effects of agricultural groundwater use in the oasis on groundwater in the foreland of the oasis need further study. Sustainable use of this productive vegetation is possible but requires proper management.  相似文献   

3.
Question: Can GIS and GPS technology be used to quantify the hydrological regime of different plant communities on turloughs (groundwater dependent calcareous wetlands)? Location: Skealoghan turlough, County Mayo, Ireland. Methods: Plant communities were mapped and digitised with GIS software and a digital elevation model of the site was constructed from differential GPS data. Together with records of water level fluctuations on the site from May 2001 to May 2004, these data were used to calculate hydrological variables for each plant community. Hierarchical cluster analysis was used to identify groups of plant communities with similar hydrological regimes. Results: 15 plant communities were mapped at Skea loghan, with the Cirsio‐Molinietum and Ranunculo‐Potentilletum anserinae being the dominant phytosociological associations. Skealoghan is subject to large temporal and spatial variation in its hydrological regime and fluctuations in water level are intrinsically linked to rainfall. The spatial variation in flooding can be linked to the vegetation zones. Conclusions: GIS and DGPS technology can be used to quantify the hydrological regime of different plant communities on turloughs. Since the hydrological regime is a major environmental factor controlling the vegetation composition of the site, the maintenance of natural flooding regimes is a vital component for the conservation and management of the diverse vegetation mosaic at Skealoghan turlough.  相似文献   

4.
Tamarix ramosissima (Tamaricaceae) is a woody phreatophyte that has invaded thousands of hectares of floodplain habitat in the southwestern U.S. In this study, we examined the response of gas exchange and stem sap flow of Tamarix and three co-occurring native phreatophytes (Pluchea sericea (Asteraceae), Prosopis pubescens (Fabaceae) and Salix exigua (Salicaceae)) to drought conditions in an early successional floodplain community in the Mojave Desert of southern Nevada. In an analysis of a size/age series of each species across the whole floodplain (both mature and successional stands), stem growth rate was lowest for Tamarix. However, along the same successional chronosequence, Tamarix came to dominate the 50+ year old stands with dense thickets of high stem density. Xylem sap flow, when expressed on a sapwood area basis, was highest in Tamarix under early drought conditions, but comparable between the four species toward the end of the summer dry season. Multivariate analysis of the gas exchange data indicated that the four species differentiated based on water use under early drought conditions and separated based on plant water potential and leaf temperature (indices of drought effects) at the end of the summer dry season. This analysis suggests that the invasive Tamarix is the most drought tolerant of the four species, whereas Salix transpires the most water per unit leaf surface area and is the least tolerant of seasonal water stress. Therefore, Salix appears to be well adapted to early successional communities. However, as floodplains in this arid region become more desiccated with age, Tamarix assumes greater dominance due to its superior drought tolerance relative to native phreatophytes and its ability to produce high density stands and high leaf area. Received: 8 August 1996 / Accepted: 29 January 1997  相似文献   

5.
Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This study sought to determine whether riparian vegetation characteristics differed between sites where Tamarix was present and sites where Tamarix was absent during the invasion of the upper Verde. We hypothesized that herbaceous understory and woody plant communities would differ between Tamarix present and absent sites. Our hypothesis was generally confirmed, the two types of sites were different. Tamarix present sites had greater abundance of all vegetation, native understory species, graminoids, and native trees, and a positive association with perennial native wetland plant species. Tamarix absent sites had greater abundance of exotic plants and upland adapted plants and an association with greater abiotic cover and litter. These results are contrary to other reports of Tamarix association with depauperate riparian plant communities, and suggest that Tamarix invasion of a watershed with a relatively natural flow regime and a robust native plant community follows similar establishment patterns as the native riparian plant community.  相似文献   

6.
刘深思  徐贵青  米晓军  陈图强  李彦 《生态学报》2022,42(21):8881-8891
干旱区因降水稀少,地下水成为荒漠植被重要且稳定的水源。选取古尔班通古特沙漠南缘建群种植物梭梭(Haloxylon ammodendron)为研究对象,通过测量不同地下水埋深(3.45、9.08、10.47、13.27 m和15.91 m)下生长季前期和后期同化枝生理生化指标(黎明水势、正午水势、含水量、氯离子、钠离子、脯氨酸和非结构性碳水化合物)和生长与形态特征(生长速率和胡伯尔值),旨在认识荒漠植物对地下水埋深增加和季节性干旱的响应特征和调节适应机制。结果表明:(1)梭梭应对地下水埋深变化的生理调节对策,是采取先降低后升高黎明前同化枝水势、降低新枝形成期同化枝生长速率、增大胡伯尔值和积累非结构性碳水化合物的策略;(2)梭梭应对生长季大气干旱的生理调节对策,是通过降低黎明前同化枝水势、维持较高胡伯尔值、积累钠离子和消耗淀粉抵御季节性干旱;(3)在大气干旱与地下水水文干旱交互作用下,梭梭是采取降低正午同化枝水势、维持较高的同化枝含水量和积累可溶性糖的生态策略。综上所述,梭梭在响应地下水水文干旱和季节性大气干旱的生理特征间存在差异。研究结果丰富了水文和大气干旱对梭梭生理和生长影响的认知,可以为基于地下水资源管理的干旱区荒漠植被保育提供参考。  相似文献   

7.
1. Within a lake district of relatively homogeneous geomorphology, the responses of lakes to climate are influenced by the complexity of the hydrogeologic setting, position in the landscape, and lake‐specific biological and physical features. We examined lake chemical responses to drought in surface water‐ and groundwater‐dominated districts to address two general questions. (1) Are spatial patterns in chemical dynamics among lakes uniform and synchronous within a lake district, suggesting broad geomorphic controls; variable in a spatially explicit pattern, with synchrony related to landscape position, suggesting hydrologic flowpath controls; or spatially unstructured and asynchronous, suggesting overriding control by lake‐specific factors? (2) Are lake responses to drought a simple function of precipitation quantity or are they dictated by more complex interactions among climate, unique lake features, and hydrologic setting? 2. Annual open‐water means for epilimnetic concentrations of chloride, calcium, sulfate, ANC, DOC, total nitrogen, silica, total phosphorus, and chlorophyll a measured between 1982 and 1995 were assembled for lakes in the Red Lake and ELA districts of north‐western Ontario, the Muskoka – Dorset district in south‐central Ontario, and the Northern Highland district of Wisconsin. Within each district, we compared responses of lakes classified by landscape position into highland or lowland, depending on relative location within the local to regional hydrologic flow system. Synchrony, defined as a measure of the similarity in inter‐annual dynamics among lakes within a district, was quantified as the Pearson product‐moment correlation (r) between two lakes with observations paired by year. To determine if solute concentrations were directly related to interannual variations in precipitation quantity, we used regression analysis to fit district‐wide slopes describing the relationship between each chemical variable and annual (June to May) and October to May (Oct–May) precipitation. 3. Among lakes in each of the three Ontario districts, the pattern of chemical response to interannual shifts in precipitation was spatially uniform. In these surface water‐ dominated districts, solute concentrations were generally a simple function of precipitation. Conservative solutes, like calcium and chloride, tended to be more synchronous and were negatively related to precipitation. Solutes such as silica, total phosphorus, and chlorophyll a, which are influenced by in‐lake processes, were less synchronous and relationships with precipitation tended to be positive or absent. 4. In the groundwater‐dominated Northern Highland lakes of Wisconsin, we observed spatial structure in drought response, with lowland lakes more synchronous than highland lakes. However, there was no evidence for a direct relationship between any solute and precipitation. Instead, increases in the concentration of the conservative ion calcium during drought were not followed by a symmetrical return to pre‐drought conditions when precipitation returned to normal or above‐average values. 5. For calcium, time lags in recovery from drought appeared related to hydrologic features in a complex way. In the highland Crystal Lake, calcium concentrations tracked lake stage inversely, with a return to pre‐drought concentrations and lake stage five years after the drought. This pattern suggests strong evaporative controls. In contrast, after five years of normal precipitation, calcium in the lowland Sparkling Lake had not returned to pre‐drought conditions despite a rebound in lake stage. This result suggests that calcium concentrations in lowland lakes were controlled more by regional groundwater flowpaths, which track climatic signals more slowly. 6. Temporal dynamics driven by climate were most similar among lakes in districts that have a relatively simple hydrology, such as ELA. Where hydrologic setting was more complex, as in the groundwater‐dominated Northern Highland of Wisconsin, the expression of climate signals in lakes showed lags and spatial patterns related to landscape position. In general, we expect that landscape and lake‐specific factors become increasingly important in lake districts with more heterogeneous hydrogeology, topography or land use. These strong chemical responses to climate need to be considered when interpreting the responses of lakes to other regional disturbances.  相似文献   

8.
The present paper discusses water level fluctuations in different parts of boreal mire complexes (eleven localities), mainly aapa mire complexes, on the basis of measurements performed by means of shallow observation wells and a few deeper observation tubes (piezometers) in the coastal half of the southern aapa mire zone in Finland. The sites represented intact vegetation from 12 different habitat types (communities), which were divided a priori into habitats with a stable surface moisture status (stable habitats) and into habitats with an unstable surface moisture status (unstable habitats). In stable habitats water level fluctuations took place according to the acrotelm–catotelm model, but the unstable habitats clearly deviated from the general pattern: water level fluctuations in them were not at all concentrated to the surficial, porous peat layer. Direct gradient analysis was used for arranging the communities along the water level fluctuation gradient. Variability of the water table, using 80% amplitude of water table residence, was used for the arrangement. The gradient was split into three groups: (1) habitats with a slightly fluctuating water table, (2) habitats with a considerably fluctuating water table and (3) habitats with an extremely fluctuating water table. The last group nearly corresponded to aro wetlands, and represented a very special habitat type. Indirect gradient analysis (NMDS ordination) also revealed the water level fluctuation gradient along with the gradient of traditional water level categories. According to the results of direct and indirect gradient analysis, the water level fluctuation seems to be an independent and important vegetation gradient. In peatlands, it occurs alongside with the traditional gradient of water level categories reflecting the mean water table. The responses of species to the range of water level fluctuations seem to reflect their tolerance to disturbances and evidently to seasonal drought. Most Sphagnum species are absent or in poor condition in habitats with extremely fluctuating water table. Vascular plant species that experienced most extreme water level fluctuations (Carex nigra, Juncus filiformis) have earlier been regarded as disturbance indicators. In addition, the difference between the piezometric water level and simultaneously measured water table depth reached the highest values within the habitats of those species (i.e., within Polytrichum commune aro wetlands) showing the downward direction of water movement in sandy mineral soil.  相似文献   

9.
The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.  相似文献   

10.
荒漠区植被对地下水埋深响应研究进展   总被引:12,自引:1,他引:11  
赵文智  刘鹄 《生态学报》2006,26(8):2702-2708
荒漠区植被包括以旱生植物为主的荒漠植被和以中生植物为主的荒漠河岸林。综述了荒漠区植被对地下水埋深在个体、种群、群落以及斑块尺度上响应的研究成果,指出:荒漠区植物对地下水埋深的响应并不是简单的线性关系,而是植物适应气候、土壤、地下水等环境因素综合作用的结果,应在地下水与植被达到平衡态的基础上充分考虑生境土壤异质性、植被可塑性并采用长期定位和控制试验相结合的方法进行综合研究。强调在今后的研究中,加强同位素示踪技术和高光谱遥感技术的应用,开展植物水力提升及其机理研究;加强荒漠区植被对地下水响应机理研究特别是微观尺度(分子水平)和响应过程长期定位研究;重视植被响应地下水位波动和水质变化的研究;强化在景观尺度和生态系统尺度集成研究,以便为管理包括地下水在内的荒漠生态系统提供依据。  相似文献   

11.
12.
Management of riparian plant invasions across the landscape requires understanding the combined influence of climate, hydrology, geologic constraints and patterns of introduction. We measured abundance of nine riparian woody taxa at 456 stream gages across the western USA. We constructed conditional inference recursive binary partitioning models to discriminate the influence of eleven environmental variables on plant occurrence and abundance, focusing on the two most abundant non‐native taxa, Tamarix spp. and Elaeagnus angustifolia, and their native competitor Populus deltoides. River reaches in this study were distributed along a composite gradient from cooler, wetter higher‐elevation reaches with higher stream power and earlier snowmelt flood peaks to warmer, drier lower‐elevation reaches with lower power and later peaks. Plant distributions were strongly related to climate, hydrologic and geomorphic factors, and introduction history. The strongest associations were with temperature and then precipitation. Among hydrologic and geomorphic variables, stream power, peak flow timing and 10‐yr flood magnitude had stronger associations than did peak flow predictability, low‐flow magnitude, mean annual flow and channel confinement. Nearby intentional planting of Elaeagnus was the best predictor of its occurrence, but planting of Tamarix was rare. Higher temperatures were associated with greater abundance of Tamarix relative to P. deltoides, and greater abundance of P. deltoides relative to Elaeagnus. Populus deltoides abundance was more strongly related to peak flow timing than was that of Elaeagnus or Tamarix. Higher stream power and larger 10‐yr floods were associated with greater abundance of P. deltoides and Tamarix relative to Elaeagnus. Therefore, increases in temperature could increase abundance of Tamarix and decrease that of Elaeagnus relative to P. deltoides, changes in peak flow timing caused by climate change or dam operations could increase abundance of both invasive taxa, and dam‐induced reductions in flood peaks could increase abundance of Elaeagnus relative to Tamarix and P. deltoides.  相似文献   

13.
Amphibians and reptiles (herpetofauna) have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. Our objective was to relate variation in herpetofauna abundance to changes in habitat caused by a beetle used for Tamarix biocontrol (Diorhabda carinulata; Coleoptera: Chrysomelidae) and riparian restoration. During 2013 and 2014, we measured vegetation and monitored herpetofauna via trapping and visual encounter surveys (VES) at locations affected by biocontrol along the Virgin River in the Mojave Desert of the southwestern United States. Twenty‐one sites were divided into four riparian stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence or absence of restoration. Restoration activities consisted of mechanically removing non‐native trees, transplanting native trees, and restoring hydrologic flows. Restored sites had three times more total lizard and eight times more yellow‐backed spiny lizard (Sceloporus uniformis) captures than other stand types. Woodhouse's toad (Anaxyrus woodhousii) captures were greatest in unrestored and restored Tam‐Pop/Sal sites. Results from VES indicated that herpetofauna abundance was greatest in the restored Tam‐Pop/Sal site compared with the adjacent unrestored Tam‐Pop/Sal site. Tam sites were characterized by having high Tamarix cover, percent canopy cover, and shade. Restored Tam‐Pop/Sal sites were most similar in habitat to Tam‐Pop/Sal sites. Two species of herpetofauna (spiny lizard and toad) were found to prefer habitat components characteristic of restored Tam‐Pop/Sal sites. Restored sites likely supported higher abundances of these species because restoration activities reduced canopy cover, increased native tree density, and restored surface water.  相似文献   

14.
The impacts of changing land use on hydrology and dominant plant species from 1850–1990 were investigated in a palustrine wetland in southern Wisconsin, USA. Aerial photographs, historic maps and water levels of the area were used to determine changes in land use, wetland vegetation, and groundwater and surface flows over time. Piezometers and water table wells were monitored weekly for two years. Vegetation was quantified in four one-square meter quadrats at each water level measurement site. Linear regression models and multivariate ordinations were used to relate wetland plant species to hydrologic, chemical and spatial variables. The current hydrologic budget of the wetland was dominated by precipitation and evapotranspiration, although overland flow into the wetland from the subwatershed has increased twenty-fold since 1850. Water level stabilization in the adjacent Yahara River, creek channelization, and groundwater pumping have decreased inputs of groundwater and spring-fed surface water, and increased retention of precipitation. Typha spp. and Phalaris arundinacea L. have increased in the wetland, while Carex spp. have decreased. Phalaris arundinacea was found most often in the driest sites, and the sites with the greatest range of water levels. Typha spp. dominated in several hydrologic settings, indicating that water depth was not the only factor controlling its distribution. The distributions of dominant plant species in the wetland were most closely correlated with site elevation and average water levels, with some weaker correlations with vertical groundwater inflows and specific conductance.  相似文献   

15.
Meadow restoration efforts typically involve the modification of stream channels to re‐establish hydrologic conditions necessary for the maintenance of native vegetation. To predict change in the distribution of common meadow plant species in response to meadow restoration, a hydrologic model was loosely coupled to a suite of individual plant species distribution models. The approach was tested on a well‐documented meadow/stream restoration project on Bear Creek, a tributary to the Fall River in northeastern California, U.S.A. We developed a surface‐water and groundwater hydrologic model for the meadow. Vegetation presence and absence data from 170 plots were combined with simulated water‐table depth time series to develop habitat‐suitability models for 11 herbaceous plant species. In each model, the habitat suitability is predicted as a function of growing‐season, water‐table depth, and range. The hydrologic model was used to simulate water‐table depth time series for the pre‐ and post‐restoration conditions. These results were used to predict the spatial distribution of habitat suitability for the 11 herbaceous plant species. Model results indicate that restoration changed water levels throughout the study area, extending well beyond the near‐stream region. Model results also indicate an increase in the spatial distribution of suitable habitat for mesic vegetation and a concomitant decrease in the spatial distribution of suitable habitat for xeric vegetation. The methods utilized in this study could be used to improve setting of objective and performance measures in restoration projects in similar environments, in addition to providing a quantitative, science‐based approach to guide riparian restoration and active revegetation efforts.  相似文献   

16.
曾嘉  陈槐  刘建亮  杨随庄  严飞  曹芹  杨刚 《生态学报》2022,42(2):625-634
酚类物质作为泥炭地重要的碳分解抑制剂,植被作为泥炭地关键的碳输入来源,它们在土壤碳(可溶性有机碳(DOC)等)周转过程中都发挥着重要作用。然而,目前关于植被群落结构、酚类物质以及DOC含量对水位波动的响应存在较大争议。因此,为明确泥炭地水位下降对植被群落结构、酚类物质以及DOC含量的影响并探明三者间的潜在联系,以若尔盖高原泥炭地作为研究对象,选取红原县日干乔地区3处不同地下水位泥炭地(水位由高到低依次为S1(-1.9 cm)、S2(-10 cm)、S3(-19 cm)样地),调查不同水位条件下植被群落结构特征,并探究酚类物质及土壤碳含量对水位波动的响应。结果表明:(1)从S1到S3样地水位下降促进土壤DOC显著增加(P<0.05),土壤总碳从S1到S2显著增加(P<0.05),而从S2到S3无显著差异;(2)泥炭地水位下降促使禾本科(发草Deschampsia cespitosa)、莎草科(木里薹草Carex muliensis、乌拉草Carex meyeriana)植物大量出现,植被群落高度显著增加(P<0.05)。植被群落地上生物量由153.67 g/m~2增加至...  相似文献   

17.
Invasion of riparian habitats by non‐native plants is a global problem that requires an understanding of community‐level responses by native plants and animals. In the Great Plains, resource managers have initiated efforts to control the eastward incursion of Tamarix as a non‐native bottomland plant (Tamarix ramosissima) along the Cimarron River in southwestern Kansas, United States. To understand how native avifauna interact with non‐native plants, we studied the effects of Tamarix removal on riparian bird communities. We compared avian site occupancy of three foraging guilds, abundance of four nesting guilds, and assessed community dynamics with dynamic, multiseason occupancy models across three replicated treatments. Community parameters were estimated for Tamarix‐dominated sites (untreated), Tamarix‐removal sites (treated), and reference sites with native cottonwood sites (Populus deltoides). Estimates of initial occupancy (ψ2006) for the ground‐to‐shrub foraging guild tended to be highest at Tamarix‐dominated sites, while initial occupancy of the upper‐canopy foraging and mid‐canopy foraging guilds were highest in the treated and reference sites, respectively. Estimates of relative abundance for four nesting guilds indicated that the reference habitat supported the highest relative abundance of birds overall, although the untreated habitat had higher abundance of shrub‐nesters than treated or reference habitats. Riparian sites where invasive Tamarix is dominant in the Great Plains can provide nesting habitat for some native bird species, with avian abundance and diversity that are comparable to remnant riparian sites with native vegetation. Moreover, presence of some native vegetation in Tamarix‐dominated and Tamarix‐removal sites may increase abundance of riparian birds such as cavity‐nesters. Overall, our study demonstrates that Tamarix may substitute for native flora in providing nesting habitat for riparian birds at the eastern edge of its North American range.  相似文献   

18.
Dynamic hydrochemical and vegetation gradients in fens   总被引:1,自引:0,他引:1  
The mixing of groundwater, river water and precipitation was studied in a discharge and a recharge fen in the Vechtplassen area, the Netherlands. The aim of the study was to characterize relationships between vegetation in fens, the chemical composition of the fen water, and the hydrologic regimes. We were particularly interested in the influence of polluted water from the river Vecht on vegetation and nutrient dynamics. Analyses were made for Ionic Ratio (IR = 2[Ca]/(2[Ca] + [Cl]), molar concentrations) and Electrical Conductivity (EC), all indices of the relative importance of each of the three main water sources: groundwater, river water and precipitation.During winter, water in the discharge fen was strongly influenced by calcium-rich groundwater (high IR, moderate EC), while the recharge fen was entirely fed by precipitation (low IR and EC). During summer, river water with a moderate IR and high EC infiltrated the fens and caused a dramatic change in the chemical composition of the fen water. In the discharge fen, infiltration occurred predominantly as sheetflow, causing inundation of the entire fen surface. River water infiltration affected the surface peat of this fen more severely than deeper peat layers. Spatial variation in water chemistry along the transect was small, and only one type of plant community was found. In the recharge fen, river water infiltration occurred in subsurface water, and rainwater that had accumulated during the winter persisted in the central parts of the fen. Gradients in fen water chemistry were correlated with the observed distribution of three plant associations. Differences in water chemistry could also be attributed to intra-site variation in the relative importance of the three water sources. In both fens, there was considerable temporal variation in the chemical composition of the fen water, clearly related to dynamics of the hydrologic regime, particularly infiltration of river water. There are indications that characteristic mesotraphent fen plant communities are negatively affected by water from the river Vecht. River water supply should therefore be avoided as much as possible if these fen plant communities are to be maintained.  相似文献   

19.
朱丽  徐贵青  李彦  唐立松  牛子儒 《生态学报》2017,37(6):1912-1921
以3条样带上117块植被群落调查样方为基础资料,研究了海流兔河流域植被物种多样性及生物量与地下水位之间的关系。结果表明:1)地下水位高低及地貌类型均会影响草本层植物群落组成及优势种构成。滩地样地中,随地下水位降低,优势草本的更替方向为寸草,芨芨草,马蔺,狗尾草,碱茅;沙坡样地中,优势草本的更替方向为大针茅,沙鞭,沙蓬,沙打旺。2)地下水位为1.5 m时是草本植物群落生长发育最适宜区域,物种多样性及丰富度达到最大,而灌木层物种多样性及丰富度随地下水位下降呈现波动变化的特征;当地下水位埋深小于5.0 m时,草本层物种多样性及丰富度明显高于灌木层,在地下水位埋深大于5.0 m时,草本层物种多样性指数开始出现低于灌木层的现象。3)草本植物多样性及丰富度和生物量之间关联性不强,滩地样地中,草本层地上生物量及地下生物量在地下水位为1.8 m时具有最大值,但植物群落结构较为单一;沙坡样地中,地上生物量最大值出现在地下水位为5.0 m的区域内,而地下生物量最大值出现在地下水位为3.5 m时。综上,物种多样性、地上及地下生物量与地下水位都不是简单的线性关系,而是有一个最适水位;高于或低于这个最适水位,多样性和生物量都会下降。  相似文献   

20.
 Seasonal change in the δ2H content of water from twig sap, soil, rainfall and groundwater were measured to determine the water sources accessed by jarrah (Eucalyptus marginata) trees at three sites in Western Australia with differing soils and depths to water table. During winter and spring the main contributor to the water uptake of the trees was stored water in the surface layers of the soil replenished by predominantly winter rainfall. With the onset of summer drought jarrah became more reliant on water from deeper down the profile. There was no clear evidence that jarrah could tap water from groundwater more than 14 m deep in deep sands. Defining the source of water for trees in deep lateritic soils using stable isotopes is hampered by the uniform deuterium profiles down most of the unsaturated zone and into the groundwater. There was a limited response in the δ2H values of sapwater in twigs to changes in the δ2H of the upper layers of the deep sand following input of rainfall in autumn. The damped response was related to the small variation in the δ2H composition of rainfall in most events during the year and the mixing in the tree of water extracted from different locations in the soil profile. Received: 21 August 1995 / Accepted: 3 December 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号