首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
脆性X综合征的基因诊断与产前诊断   总被引:6,自引:0,他引:6  
为了探讨简便、快速、准确、价廉的脆性X综合征的诊断方法,对6个智能低下家系进行了细胞遗传学检查,以及PCR直接扩增FMR1 5'端(CGG)n<\sub>重复序列、RT-PCR扩增FMR1基因的cDNA序列的分子遗传学检查。A家系先证者脆性X染色体高表达(35/273),分子遗传学检查证实为脆性X综合征全突变患者;B家系先证者及其母亲无脆性X染色体表达,分子遗传学检查证实为非脆性X综合征患者;C家系的男性胎儿脆性X染色体表达(5/93),先证者及其母亲未发现脆性X染色体,分子遗传学检查证实男性胎儿为脆性X综合征全突变患者,其母亲为前突变携带者,哥哥为嵌合体患者;D家系先证者脆性X染色体高表达17%,其姐姐脆性X染色体5%,分子遗传学检查证实先证者为脆性X综合征全突变患者,其姐姐为嵌合体患者;E家系先证者及其母亲,F家系先证者发现可疑脆性X染色体,分子遗传学检查证实为非脆性X综合征家系。结论: PCR直接扩增FMR1基因(CGG)n<\sub>重复序列联合RT-PCR扩增FMR1基因cDNA 序列简便、快速、价廉。可用于脆性X综合征的筛查、诊断及产前诊断,有推广应用价值。  相似文献   

2.
脆性X综合征(FXS)由脆性X智力低下蛋白FMRP表达降低甚至完全缺失引起,是最常见的遗传性智力缺陷综合征和孤独症谱系障碍的单基因致病因素。FMRP不仅可与离子通道mRNA结合,如电压门控钾通道(Kv3.1和Kv4.2)等,还直接与多个离子通道作用,如钠激活钾通道(Slack)等。FMRP的缺失导致神经元离子通道表达异常和功能失调,在不同的脑区和不同的神经细胞类型中引起特定的离子稳态失衡、膜电位改变和兴奋性失常,导致神经环路过度兴奋。现就FMRP缺失对不同离子通道的异常调控及其研究进展进行综述。  相似文献   

3.
张俊  黄英 《生命的化学》2007,27(4):305-307
X脆性综合征(fragile X syndrome,FXS)是由X脆性智力低下1(FMR1)基因5'端非翻译区CGG重复序列的异常扩增,导致X脆性智力低下蛋白(FMRP)缺失引起的.非编码RNA是除编码蛋白质的mRNAs以外的其他所有RNA分子,已被发现在中枢神经系统中具有重要的作用,如微RNA与BC1/BC200 RNA参与了X脆性智力低下蛋白的翻译抑制.认识非编码RNA与X脆性综合征的关系不但能加深对X脆性综合征的分子机制的理解,而且有助于揭示学习与记忆的奥秘.  相似文献   

4.
脆性X综合征为最常见的遗传性智力低下性疾病之一,是由于FMR1基因异常导致其编码的脆性X智力低下蛋白减少或缺失所致.研究发现脆性X综合征尸解病人和FMR1基因敲除小鼠(KO鼠)神经元树突棘发育不成熟,模型小鼠海马区代谢性谷氨酸受体所触发的长时程抑制(LTD)延长,不成熟的树突棘导致突触功能障碍被认为是脑功能异常的基础.最近的研究表明,应用代谢性谷氨酸受体拮抗剂能改善由FMRP缺失所导致的突触和行为缺陷,表明mGluR功能过度激活可能参与了脆性X综合征的发病过程,但具体机制不明.FMRP是一种mRNA结合蛋白,可作为翻译抑制因子负性调节突触后膜mRNA的翻译和表达.因此推测FMRP缺乏和减少可能导致mGluR激发的mRNA翻译增多,参与神经系统发育的蛋白过度表达,而影响树突棘的发育,但具体机制仍不清楚.本文对mGluR和脆性X综合征的研究历史和最新进展进行了讨论.  相似文献   

5.
脆性X综合征是常见的遗传性智力低下性疾病,其发病率高,临床表现复杂,遗传规律独特,对脆性X 综合征的发病机理和脆性X综合征筛查与诊断方法等方面的一些研究进展进行了综述.  相似文献   

6.
脆性X综合征(fragile X syndrome,FXS)是最常见的遗传性认知障碍疾病,也是一种与自闭症谱系障碍(autism spectrum disorder,ASD)相关的严重的基因疾病.它主要是由于脆性X智力低下基因1(fragile X mental retardation 1,FMR1)的异常扩增及其上游Cp G岛的异常甲基化,导致其编码的脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)表达减少或缺失引起的.FMRP与miRNA(micro RNA)均具有翻译抑制活性,而且FMRP在生物化学和遗传学上均与miRNA调控通路有相互作用.此外,越来越多的研究发现miRNA调控通路在FXS的发病和治疗中发挥作用.因此,本文对miRNA的功能及其与脆性X蛋白家族成员间的相互作用进行阐述,为在miRNA水平了解FXS的发病机制奠定基础.  相似文献   

7.
目的:优化PCR扩增条件,建立一种有效检测脆性X综合征的方法。方法:在常规PCR的基础上,采用耐高温酶替代法、碱基替代法,同时加入有机溶剂DMSO等,对表型正常的人群进行FMR1基因CGG重复序列检测。结果:改良PCR法可以提高G C富集区扩增效率,并取得了较好的效果。结论:建立了一种扩增FMR-1基因中CGG重复序列的可行方法。  相似文献   

8.
动态突变与人类健康梁文兰(山东淄博市第二卫生学校255015)脆性X综合征[fra(X)],是一种常见的遗传性智力低下疾病。在遗传性智力障碍疾病中,其发病率仅次于先天愚型。占智力低下人群的0·5%~10%,在X连锁智力低下中占40%。其特征为不同程度...  相似文献   

9.
脆性X相关基因I(FXR1)发现于1995年,位于3号染色体3q28。其产物脆性X相关蛋白1(FXR1P)与脆性X智障蛋白1 (FMR1P)、脆性X相关蛋白2(FXR2P)形成一个RNA结合蛋白家族。目前认为这三种蛋白能输送mRNA分子并调控其翻译过程。FXR1的翻译产物(FXR1P)分子中存在两个KH结构域和一个RGG结构域,这两种结构域与FXR1P分子的RNA结合作用有关。FXR1P的表达具有较高的组织特意性,在横纹肌中表达最高。合适的动物模型对于一种蛋白的功能研究具有十分重要的意义,目前,FXR1敲除的各种动物模型如小鼠、斑马鱼、非洲爪蟾的近亲Xenopus tropicalis已经在不同的实验室建立。本文主要介绍了FXR1P的结构特点、功能及其实验动物模型。  相似文献   

10.
近年来,对脆性位点分子生生物学的研究已取得突破性进展,脆性X综合征智力低候选基因FMR-1已被克隆,其5'端外显子是由一段不稳定的微随体序列n组成,该n重复序列拷贝数的遗传是不稳定的,其扩增长度的变化与脆性与点的表达,CpG岛的甲基化,FMR-1基因的功能,临床表型具有相关性,分子遗传学上把 这种独特的遗传形式称为“动态突变”。这一发现,为脆性X综合征及其它与动态突变有关的遗传病的研究提供了重要的  相似文献   

11.
Approximately 2%–5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings, by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between −24 and −62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families.  相似文献   

12.
The fragile X mental retardation syndrome is caused by an expansion of a trinucleotide repeat (CGG)n in the FMR-1 gene. Molecular genetic study of fragile X provides accurate diagnosis and facilitates genetic counseling in families with affected members. We present here the molecular study of 59 Spanish fragile X syndrome families using probe StB 12.3 and the polymerase chain reaction (PCR) of the (CGG)n repeat sequence of the FMR-1 gene. The results obtained have allowed us to characterize 455 individuals, including eight prenatal diagnoses. The clinical diagnosis of fragile X in 89 affected males was confirmed, 137 female carriers were identified (48 of whom were mentally retarded), 176 individuals at risk were found not to have the expansion, and 12 cases of normal transmitting males (NTM) were detected. In the sample studied, no de novo mutations were detected, nor any mutation different from that described for the (CGG)n expansion. One nonmentally retarded male was detected as having an unmethylated CpG island for the FMR-1 gene, but with more than 200 CGG repeats (high functioning male). The analysis of the (CGG)n repeat in 208 normal chromosomes gave an allele distribution similar to that in other Caucasoid population groups, with alleles of 29 and 30 CGG repeats accounting for 46% of the chromosomes. The combination of Southern analysis and PCR of the (CGG)n repeat is highly efficient for diagnosis, compared with cytogenetic techniques, especially in the detection of female carriers, NTMs, and prenatal diagnosis, enabling accurate genetic counseling to be provided in all cases.  相似文献   

13.
The fragile X phenotype has been found, in the majority of cases, to be due to the expansion of a CGG repeat in the 5'-UTR region of the FMR-1 gene, accompanied by methylation of the adjacent CpG island and inactivation of the FMR-1 gene. Although several important aspects of the genetics of fragile X have been resolved, it remains to be elucidated at which stage in development the transition from the premutation to the full mutation occurs. We present two families in which discordance between two sets of MZ twins illustrates two important genetic points. In one family, two affected MZ brothers differed in the number of CGG repeats, demonstrating in vivo mitotic instability of this CGG repeat and suggesting that the transition to the full mutation occurred postzygotically. In the second family, two MZ sisters had the same number of repeats, but only one was mentally retarded. When the methylation status of the FMR-1 CpG island was studied, we found that the majority of normal chromosomes had been inactivated in the affected twin, thus leading to the expression of the fragile X phenotype.  相似文献   

14.
A gene designated "FMR-1" has been isolated at the fragile-X locus. One exon of this gene is carried on a 5.1-kb EcoRI fragment that exhibits length variation in fragile-X patients because of amplification of or insertion into a CGG-repeat sequence. This repeat probably represents the fragile site. The EcoRI fragment also includes an HTF island that is hypermethylated in fragile-X patients showing absence of FMR-1 mRNA. In this paper, we present further evidence that the FMR-1 gene is involved in the clinical manifestation of the fragile-X syndrome and also in the expression of the cellular phenotype. A deletion including the HTF island and exons of the FMR-1 gene was detected in a fragile X-negative mentally retarded male who presented the clinical phenotype of the fragile-X syndrome. The deletion involves less than 250 kb of genomic DNA, including DXS548 and at least five exons of the FMR-1 gene. These data support the hypothesis that loss of function of the FMR-1 gene leads to the clinical phenotype of the fragile-X syndrome. In the fragile-X syndrome, there are pathogenetic mechanisms other than amplification of the CGG repeat that do have the same phenotypic consequences.  相似文献   

15.
16.
Fragile X syndrome is one of the most frequent causes of mental retardation. Since the phenotype in this syndrome is quite variable, clinical diagnosis is not easy and molecular laboratory diagnosis is necessary. Usually DNA from blood cells is used in molecular tests to detect the fragile X mutation which is characterized by an unstable expansion of a CGG repeat in the fragile X mental retardation gene (FMR1). In the present study, blood and buccal cells of 53 mentally retarded patients were molecularly analyzed for FMR1 mutation by PCR. Our data revealed that DNA extraction from buccal cells is a useful noninvasive alternative in the screening of the FMR1 mutation among mentally retarded males.  相似文献   

17.
Polymerase chain reaction analysis of fragile X mutations   总被引:5,自引:0,他引:5  
Summary The mutation that underlies the fragile X syndrome is presumed to be a large expansion in the number of CGG repeats within the gene FMR-1. The unusually GC-rich composition of the expanded region has impeded attempts to amplify it by the polymerase chain reaction (PCR). We have developed a PCR protocol that successfully amplifies the (CGG)n region in normal, carrier and affected individuals. The PCR analysis of several large fragile X families is presented. The PCR results agree with those obtained by direct genomic Southern blot analyses. These favorable comparisons suggest that the PCR assay may be suitable for rapid testing for fragile X mutations and premutations and genetic screening of at-risk individuals.  相似文献   

18.
19.
Molecular genetic analysis of individuals from 6 Egyptian and 33 German families with fragile X syndrome and 240 further patients with mental retardation was performed applying a completely non-radioactive system. The aim of our study was the development of a non-radioactive detection method and its implementation in molecular diagnosis of the fragile X syndrome. Furthermore, we wanted to assess differences in the mutation sizes between Egyptian and German patients and between Egyptian and German carriers of a premutation. Using non-radioactive polymerase chain reaction (PCR), agarose gel electrophoresis and blotting of the PCR products, followed by hybridisation with a digoxigenin-labelled oligonucleotide probe (CGG)5 and chemiluminescent detection, we identified the fragile X full mutation (amplification of a CGG repeat in the FMR-1 gene ranging from several hundred to several thousand repeat units) in all patients. We observed no differences in the length of the CGG repeat between the Egyptian and German patients and carriers, respectively. However, in one prenatal diagnosis, we detected only one normal sized allele in a female fetus using the PCR-agarose assay, whereas Southern blot analysis with the digoxigenin labelled probe StB 12.3 revealed presence of a full mutation. Our newly established nonradioactive genomic blotting method is based on the conventional radioactive Southern blot analysis. Labelling of the probe StB 12.3 with digoxigenin via PCR allowed the detection of normal, premutated and fully mutated alleles. For exact sizing of small premutated or large normal alleles, we separated digoxigenin labelled PCR products through denaturing poly-acrylamide gelelectrophoresis (PAGE) and transfered them to a nylon membrane using a gel dryer. The blotted PCR-fragments can easily be detected with alkaline phosphate-labelled anti-digoxigenin antibody. The number of trinucleotide repeat units can be determined by scoring the detected bands against a digoxigenated M13 sequencing ladder. Our newly developed digoxigenin/chemiluminescence approach using PCR and Southern blot analysis provides reliable results for routine detection of full fragile X mutations and premutations.  相似文献   

20.
The fragile X syndrome (Fra-X) is the most common cause of inherited mental retardation with X-linked semi-dominant inheritance. The prevalence of Fra-X in the Mexican population is unknown. The aim of this population screening study was to determine if Fra-X or FRAXE mutations are the cause of a number of cases of mental retardation in a sample of Mexican children with mental retardation of unknown cause (MRUC) and to stress the importance of performing molecular analysis of the FMR-1 gene in all patients with MRUC. We report here the direct analysis of CGG and GCC repeats within the FMR-1 and FMR-2 genes, respectively, in 62 unrelated patients with MRUC. Two male index cases had the CGG expansion, although they did not express the Xq27.3 fragile site cytogenetically. Fra-X diagnosis was highly suspected on a clinical basis in one of the patients, but not in the other. Both mothers were found to be premutation carriers. The molecular studies of FMR-1 showed that the proportion of MRUC patients with Fra-X is 3.2%. This frequency was not significantly different to that reported in most populations. As reported in other series, no patients with FRAXE were found in our sample. Our findings confirm that the molecular analysis of the FMR-1 gene is necessary in MRUC patients to achieve unequivocal diagnosis of fragile X syndrome, carrier premutation detection and for accurate genetic counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号