首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A model of the CA3 region of the hippocampus was used to simulate the P50 auditory-evoked potential response to repeated stimuli in order to study the neuronal circuits involved in a sensory-processing deficit associated with schizophrenia. Normal subjects have a reduced P50 auditory-evoked potential amplitude in response to the second of two paired auditory click stimuli spaced 0.5 s apart. However, schizophrenic patients do not gate or reduce their response to the second click. They have equal auditory-evoked response amplitudes to both clicks. When schizophrenic patients were medicated with traditional neuroleptics, the evoked potential amplitude to both clicks increased, but gating of the second response was not restored or improved. Animal studies suggest a role for septohippocampal cholinergic activity in sensory gating. We used a computational model of this system in order to study the relative contributions of local processing and afferent activity in sensory gating. We first compared the effect of information representation as average firing rate to information representation as cell assemblies in order to evaluate the best method to represent the response of hippocampal neurons to the auditory click. We then studied the effects of nicotinic cholinergic input on the response of the network and the effect of GABAB receptor activation on the ability of the local network to suppress the test response. The results of our model showed that nicotinic cholinergic input from the septum to the hippocampus can control the flow of sensory information from the cortex into the hippocampus. In addition, postsynaptic GABAB receptor activation was not sufficient to suppress the test response when the interstimulus interval was 500 ms. However, presynaptic GABAB receptor activity may be responsible for the suppression of the test response at this interstimulus interval. Received: 3 December 2001 / Accepted: 23 October 2002 / Published online: 28 February 2003 Correspondence to: K. A. Moxon (e-mail: karen.moxon@drexel.edu, Tel.:+1-215-8951959, Fax: +1-215-8954983) Supported by USPHS, MH01245, MH58414, MH-50787, MH-01121, and research grants from the Department of Veterans Affairs and the National Alliance for Research on Schizophrenia and Depression.  相似文献   

2.
The theory of phase resetting can reveal important information about the dynamic behavior of a periodic system when a single brief stimulus is applied to that system at the appropriate time. Phase resetting studies have revealed the existence in some biological systems of a vulnerable stimulus window generating desynchronization and suppression of the activity. The objective of this study was to test the hypothesis that a "singular" stimulus could annihilate this activity. Perfusion with the high-K solution produced synchronous, quasi-periodic population bursts with inter-burst interval of ~0.8-1.5 seconds. A single 0.1 ms duration anodic pulse of programmable delay and magnitude was applied to the somatic layer of the CA3 pyramidal cells. Three types of phase-resetting behavior were observed: (1) Weak resetting with little or no effect on the timing of the subsequent burst, (2) Strong resetting where the applied current pulse delayed the next event by one time period, (3) Singular behavior where the applied pulse partially or completely suppressed the subsequent bursting. The singular stimulus parameter window, however, was very narrow making it difficult to generate the singular behavior reliably. Nevertheless, the results indicate that singularities exist for high potassium neural activity and that a well timed pulse applied with the right amplitude can suppress this activity. This study suggests that phase resetting of a population of neurons is possible for quasi-periodic interictal activity and similar techniques could be applied to the control of epileptic seizures.  相似文献   

3.
4.
We made use of the [3H]phorbol 12,13-dibutyrate binding assay to investigate the effects of bifemelane on the subcellular distribution of protein kinase C in the CA3 and CA1 regions of guinea-pig hippocampal slices. Bifemelane, a drug that augments the long-term potentiation in the CA3 region, significantly induced the translocation of [3H]phorbol 12,13-dibutyrate binding activity from the cytosol to the membrane in a dose-dependent manner (10(-8) to 10(-6) M) and with no effects on total binding activity in the CA3 region. Bifemelane, at a concentration of 10(-6) M, was without effect on the subcellular distribution of [3H]phorbol 12,13-dibutyrate binding activity in the CA1 region. These observations suggest that bifemelane acts directly on the hippocampus to induce translocation of protein kinase C in the CA3 region. Such an effect may be associated with the bifemelane-induced augmentation of the long-term potentiation in this region of the brain.  相似文献   

5.
Liu JX  Pinnock SB  Herbert J 《PloS one》2011,6(3):e17562
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.  相似文献   

6.
马同军  丁见  刘嵩  熊克仁 《蛇志》2012,24(2):93-95
目的探讨眼镜蛇毒对成年大鼠海马CA3区巢蛋白(Nestin)阳性细胞表达的影响。方法采用免疫组织化学方法,观察并比较Nestin阳性细胞在眼镜蛇毒组、生理盐水组、正常对照组大鼠海马CA3区的表达。结果眼镜蛇毒组大鼠海马CA3区Nestin阳性细胞较生理盐水组、正常对照组表达明显增强(P0.01)。结论眼镜蛇毒对成年大鼠海马CA3区Nestin表达有上调作用。  相似文献   

7.
Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease.  相似文献   

8.
A model with intermediate complexity is introduced to reproduce the basic firing modes of the CA3 pyramidal cell. Our model consists of a single compartment, has two variables (membrane potential and internal calcium concentration), and involves two separate stages for interspike mechanisms and firing. Interspike dynamics is governed by voltage- and calcium-dependent ionic channels but no channel kinetics are provided. This model is suitable to be included in our statistical population model (Part II, following paper). Bifurcation analysis reveals that interspike dynamics rather than sodium firing has the dominant role in the control of bursting/nonbursting behavior. Received: 29 August 1997 / Accepted in revised form: 17 July 1998  相似文献   

9.
10.
11.
目的:在体视显微镜下分割Wistar大鼠海马CA1区、CA3区和齿状回(DG)区。方法:24只健康Wistar大鼠,分组如下:①6只大鼠取脑后硫堇染色,观察海马各区细胞形态;②6只大鼠分离出海马,体视显微镜下观察海马形态并分割CA1区、CA3区和DG区,各区分别切片后硫堇染色;③12只大鼠检测海马各区HSP 70的表达。结果:①大脑冠状切片硫堇染色清晰显示出海马CA1区、CA3区和DG区;②体视显微镜下,在海马腹侧面,沿着CA1区和DG区之间的海马沟可分割开CA1区和DG区,沿着CA3区和DG区之间的裂隙可分割开CA3区和DG区;分割后的海马各区细胞形态结构与整体大脑冠状切片上相对应区域的细胞形态结构一致;③Western blot结果显示:与对照组相比,脑缺血组HSP 70的表达在海马CA3+DG区明显上调、而在CA1无明显变化,这一结果与免疫组织化学结果一致。结论:上述方法可比较明确地分割Wistar大鼠海马CA1区、CA3区和DG区,分割得到的各区组织可用于蛋白质表达的检测。  相似文献   

12.
GABA, the main inhibitory neurotransmitter in the central nervous system, exerts its effect by rendering the postsynaptic GABAA receptors permeable to chloride ions. Thus, depolarizing or excitatory effects of GABA, experienced in early postnatal life or in certain regions and/or conditions of the adult brain, is thought to be associated with a reversed transmembrane chloride gradient. However, there is only limited direct information about the correlation of the actual excitatory versus inhibitory effects of GABA and the local chloride distribution. Precipitation of chloride with silver is a potential way to immobilize and visualize chloride ions in biological tissue. We examined the applicability of light microscopic histochemistry, based on trapping tissue chloride with silver ions during freeze-substitution or aldehyde fixation, to visualize the chloride distribution in hippocampal slices. The freeze-substitution procedure yielded better chloride retention while with aldehyde fixation tissue preservation was more appropriate. Both methods were qualitative only, had limited applicability to the superficial 20-30 microns of slices, but were able to demonstrate a reduced extracellular-to-intracellular chloride gradient in the CA1 pyramidal neurons of the newborn hippocampus as compared to adult animals. In the 4-aminopyridine model of epilepsy, redistribution of chloride from extracellular to intracellular space could also be demonstrated.  相似文献   

13.
The hippocampus is especially vulnerable to damage caused by metabolic dysregulation. However distinct sub-regions within the hippocampus differ by their relative susceptibility to such damage. Region CA1 pyramidal neurons are most sensitive to metabolic perturbations while region CA3 pyramidal neurons show more resistance, and these unique profiles of susceptibility are but one example that differentiates CA1/CA3 neurons. We present here a hypothesis that inextricably links the unique biochemistries of learning and memory in region CA1, to that of cell survival signaling, and in so doing, suggest an explanation for region CA1 susceptibility to metabolic dysfunction. Further, we propose a signaling mechanism to explain how both pathways can be simultaneously regulated. Critical to this process is the protein phosphatase PHLPP1. Finally we discuss the implications of this hypothesis and the inherent challenges it poses for treatment of neurological disorders resulting in reduced hippocampal function by increased neuron death.  相似文献   

14.
Hippocampal interneurons consist of functionally diverse cell types, most of them target the dendrites or perisomatic region of pyramidal cells with a few exceptions, like the calretinin-containing cells in the rat: they selectively innervate other interneurons. However, no electron microscopic data are available about the synaptic connections of calretinin-immunoreactive neurons in the human hippocampus. We aimed to provide these data to establish whether interneuron-selective interneurons indeed represent an essential feature of hippocampal circuits across distant species. Two types of calretinin-immunostained terminals were found in the CA1 region: one of them presumably derived from the thalamic reuniens nucleus, and established asymmetric synapses on dendrites and spines. The other type originating from local interneurons formed symmetric synapses on both pyramidal and interneuron dendrites. Distribution of postsynaptic targets showed that 26.8% of the targets were CR-positive interneuron dendrites, and 25.2% proved to be proximal pyramidal dendrites. CR-negative interneuron dendrites were also contacted (12.4%). Small caliber postsynaptic dendrites were not classified (28%). Somata were rarely contacted (7.6%). The present data suggest that calretinin-positive boutons do show a preference for other interneurons, but a considerable proportion of the targets are pyramidal cells. We propose that interneuron-selective inhibitory cells exist in the human Ammon's horn, and boutons innervating pyramidal cells derive from another cell type that might not exist in rodents.  相似文献   

15.
 We modeled the neuronal circuits that may underlie a sensory-processing deficit associated with schizophrenia. Schizophrenic patients have small P50 auditory-evoked responses to click stimuli compared to normal subjects. The P50 auditory-evoked response is a positive waveform recorded in the EEG approximately 50 ms after the auditory click stimulus. In addition to relatively small amplitudes, schizophrenic patients do not gate or suppress the P50 auditory-evoked response to the second of two paired-click stimuli spaced 0.5 s apart. Neuropleptic medication, which decreases dopaminergic neuronal transmission, increases the amplitude of the P50 auditory-evoked response but does not improve gating. Normal subjects have large P50 auditory-evoked responses to click stimuli when compared to unmedicated schizophrenic patients, and they gate their response to paired click stimuli or have smaller P50 auditory-evoked response amplitudes to the second of two click stimuli spaced 0.5 s apart. Schizophrenic patients do not gate and have similar response amplitudes to both clicks. We hypothesized that the small amplitudes of unmedicated schizophrenic subjects were due to a state of occlusion whereby excessive background noise in local circuits reduced the ability of cells to respond synchronously to sensory input, thereby reducing the amplitude of the P50 waveform in the EEG. Because the P50 auditory-evoked potential amplitudes increased with neuroleptic medication, which reduces dopaminergic neuronal transmission, we hypothesized a role for dopamine in modulating the signal-to-noise (S/N) in the local circuits responsible for sensory gating. To test the hypothesis that modulation of the S/N ratio reduces sensory gating, we developed a model of the effects of dopaminergic neuronal transmission that modulates the S/N in neuronal circuits. The model uses the biologically relevant computer model of the CA3 region of the hippocampus developed in the companion paper [Moxon et al. (2003) Biol Cybern, this volume]. Modified Hebb cell assemblies represented the response of the network to the click stimulus. The results of our model showed that excessive dopaminergic input impaired the ability of cells to respond synchronously to sensory input, which reduced the amplitudes of the P50 evoked responses. Received: 3 December 2001 / Accepted: 23 October 2002 / Published online: 28 February 2003 Correspondence to: K.A. Moxon (e-mail: karen.moxon@drexel.edu, Tel.: +1-215-8951959, Fax: +1-215-8954983) Supported by USPHS, MH01245 & MH58414, MH-01121, and research grants from the Department of Veterans Affairs and the National Alliance for Research on Schizophrenia and Depression.  相似文献   

16.
In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]  相似文献   

17.
18.
Afferents to the rostral field CA3 of the dorsal hippocampus were investigated using horseradish peroxidase retrograde transport techniques. By iontophoretic injection of horseradish peroxidase into this area of the hippocampus cells stained with this enzyme could be identified in the anterior nuclei of the thalamus, the supramillary and submamillothalamic nuclei of the hypothalamus, and the midbrain central gray matter, as well as the parietal, insular, temporal, retrosplenial, and pyriform areas of the neocortex. The findings obtained complete the picture of connections between one of the least explored sections of the rat hippocampus and other brain structures.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 469–475, July–August, 1986.  相似文献   

19.
Bios-3: Siberian experiments in bioregenerative life support   总被引:2,自引:0,他引:2  
The Russian experience with the bioregenerative life support system Bios-3 at Krasnoyarsk, Siberia, is reviewed. A brief review of other bioregenerative systems examines Biosphere 2 in Oracle, Arizona, and the Bios-1 and Bios-2 systems that preceded Bios-3. Physical details of the Bios-3 facility are provided. The use of Chlorella and higher plants for gas exchange is examined. Long-term studies of human habitation are discussed. Other topics include microflora in Bios-3, the theory of closed systems, and problems for the future.  相似文献   

20.
Recent work has demonstrated that brief application of insulin to hippocampal slices can induce a novel form of long-term depression (insulin-LTD) in the CA1 region of the hippocampus; however, the molecular details of how insulin triggers LTD remain unclear. Using electrophysiological and biochemical approaches in the hippocampal slices, we show here that insulin-LTD (i) is specific to 3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor- but not NMDA receptor-mediated synaptic transmission; (ii) is induced and expressed postsynaptically but does not require the activation of ionotropic and metabotropic glutamate receptors; (iii) requires a concomitant Ca(2+) influx through l-type voltage-activated Ca(2+) channels (VACCs) and the release of Ca(2+) from intracellular stores; (iv) requires the series of protein kinases, including protein tyrosine kinase (PTK), phosphatidylinositol 3-kinase (PI3K), and protein kinase C (PKC); (v) is mechanistically distinct from low-frequency stimulation-induced LTD (LFS-LTD) and independent on protein phosphatase 1/2 A (PP1/2 A) and PP2B activation; (vi) is dependent on a rapamycin-sensitive local translation of dendritic mRNA, and (vii) is associated with a persistent decrease in the surface expression of GluR2 subunit. These results suggest that a PI3K/PKC-dependent insulin signaling, which controls postsynaptic surface AMPA receptor numbers through PP-independent endocytosis, may be a major expression mechanism of insulin-LTD in hippocampal CA1 neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号