首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, cognitive neuroscientists have taken great advantage of functional magnetic resonance imaging (fMRI) as a non-invasive method of measuring neuronal activity in the human brain. But what exactly does fMRI tell us? We know that its signals arise from changes in local haemodynamics that, in turn, result from alterations in neuronal activity, but exactly how neuronal activity, haemodynamics and fMRI signals are related is unclear. It has been assumed that the fMRI signal is proportional to the local average neuronal activity, but many factors can influence the relationship between the two. A clearer understanding of how neuronal activity influences the fMRI signal is needed if we are correctly to interpret functional imaging data.  相似文献   

2.
Burrone J 《Current biology : CB》2005,15(21):R876-R878
A number of genetically encoded reporters of neuronal activity are being developed to assay synaptic activity with single synapse resolution. A recently engineered probe allows imaging of glutamatergic transmission with high sensitivity, and similar probes may help pave the way for optical imaging of excitatory synaptic function in vivo.  相似文献   

3.
We have assessed the utility of five new long-wavelength fluorescent voltage-sensitive dyes (VSD) for imaging the activity of populations of neurons in mouse brain slices. Although all the five were capable of detecting activity resulting from activation of the Schaffer collateral-CA1 pyramidal cell synapse, they differed significantly in their properties, most notably in the signal-to-noise ratio of the changes in dye fluorescence associated with neuronal activity. Two of these dyes, Di-2-ANBDQPQ and Di-1-APEFEQPQ, should prove particularly useful for imaging activity in brain tissue and for combining VSD imaging with the control of neuronal activity via light-activated proteins such as channelrhodopsin-2 and halorhodopsin.  相似文献   

4.
The spatiotemporal localization of neuronal signaling is important for triggering neuronal responses in specific locations at precise times. Fluorescence resonance energy transfer imaging enables measurement of spatiotemporal dynamics of signaling activity in live neurons. Although the usefulness of fluorescence resonance energy transfer is well recognized, there are many difficulties in applying it, particularly when imaging in neuronal micro-compartments in light-scattering brain tissue. Fluorescence resonance energy transfer has been imaged using several techniques including intensity-based methods, fluorescence lifetime imaging and fluorescence anisotropy imaging. These methods have different advantages and disadvantages, and thus are suitable in different applications.  相似文献   

5.
The pre-B?tzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca(2+) imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a x20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.  相似文献   

6.
7.
BACKGROUND: Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons. SCOPE OF REVIEW: Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling.  相似文献   

8.
Mental disorders, such as schizophrenia or Alzheimer’s disease, are associated with impaired synaptogenesis and/or synaptic communication. During development, neurons assemble into neuronal networks, the primary supracellular mediators of information processing. In addition to the orchestrated activation of genetic programs, spontaneous electrical activity and associated calcium signaling have been shown to be critically involved in the maturation of such neuronal networks. We established an in vitro model that recapitulates the maturation of neuronal networks, including spontaneous electrical activity. Upon plating, mouse primary hippocampal neurons grow neurites and interconnect via synapses to form a dish-wide neuronal network. Via live cell calcium imaging, we identified a limited period of time in which the spontaneous activity synchronizes across neurons, indicative of the formation of a functional network. After establishment of network activity, the neurons grow dendritic spines, the density of which was used as a morphological readout for neuronal maturity and connectivity. Hence, quantification of neurite outgrowth, synapse density, spontaneous neuronal activity, and dendritic spine density allowed to study neuronal network maturation from the day of plating until the presence of mature neuronal networks. Via acute pharmacological intervention, we show that synchronized network activity is mediated by the NMDA-R. The balance between kynurenic and quinolinic acid, both neuro-active intermediates in the tryptophan/kynurenine pathway, was shown to be decisive for the maintenance of network activity. Chronic modulation of the neurotrophic support influenced the network formation and revealed the extreme sensitivity of calcium imaging to detect subtle alterations in neuronal physiology. Given the reproducible cultivation in a 96-well setup in combination with fully automated analysis of the calcium recordings, this approach can be used to build a high-content screening assay usable for neurotoxicity screening, target identification/validation, or phenotypic drug screening.  相似文献   

9.
《Journal of Physiology》1997,91(2):69-73
The attributes of consciousness are briefly discussed and matched to the known characteristics of the serotonergic neuronal system. In particular sleep, the action of agonist drugs, the regulatory role and monitoring components, together with the receptor areas for serotonergic activity, are identified as significant correlates of consciousness. Fröhlich-like phenomena are attributed to the topology of the serotonergic cell which is posited to produce excitations in the gigaHz or very high frequency range. Coding by discrete channel frequency and propagation throughout the vast microtubule cytoskeletal structure of serotonergic activity is proposed as the biophysical basis of consciousness in higher mammals, particularly humans.  相似文献   

10.
Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of \optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.  相似文献   

11.
The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.  相似文献   

12.
Sheth SA  Nemoto M  Guiou M  Walker M  Pouratian N  Toga AW 《Neuron》2004,42(2):347-355
We investigated the relationship between neuronal activity, oxygen metabolism, and hemodynamic responses in rat somatosensory cortex with simultaneous optical intrinsic signal imaging and spectroscopy, laser Doppler flowmetry, and local field potential recordings. Changes in cerebral oxygen consumption increased linearly with synaptic activity but with a threshold effect consistent with the existence of a tissue oxygen buffer. Modeling analysis demonstrated that the coupling between neuronal activity and hemodynamic response magnitude may appear linear over a narrow range but incorporates nonlinear effects that are better described by a threshold or power law relationship. These results indicate that caution is required in the interpretation of perfusion-based indicators of brain activity, such as functional magnetic resonance imaging (fMRI), and may help to refine quantitative models of neurovascular coupling.  相似文献   

13.
Human functional brain imaging detects blood flow changes that are thought to reflect the activity of neuronal populations and, thus, the responses of neurons that carry behaviourally relevant information. Since this relationship is poorly understood, we explored the link between the activity of single neurons and their neuronal population. The functional imaging results were in good agreement with levels of population activation predicted from the known effects of sensory stimulation, learning and attention on single cortical neurons. However, the nature of the relationship between population activation and single neuron firing was very surprising. Population activation was strongly influenced by those neurons firing at low rates and so was very sensitive to the baseline or 'spontaneous' firing rate. When neural representations were sparse and neurons were tuned to several stimulus dimensions, population activation was hardly influenced by the few neurons whose firing was most strongly modulated by the task or stimulus. Measures of population activation could miss changes in information processing given simultaneous changes in neurons' baseline firing, response modulation or tuning width. Factors that can modulate baseline firing, such as attention, may have a particularly large influence on population activation. The results have implications for the interpretation of functional imaging signals and for cross-calibration between different methods for measuring neuronal activity.  相似文献   

14.
Mitochondrial trafficking is influenced by neuronal activity, but it remains unclear how mitochondrial positioning influences neuronal transmission and plasticity. Here, we use live cell imaging with the genetically encoded presynaptically targeted Ca2+ indicator, SyGCaMP5, to address whether presynaptic Ca2+ responses are altered by mitochondria in synaptic terminals. We find that presynaptic Ca2+ signals, as well as neurotransmitter release, are significantly decreased in terminals containing mitochondria. Moreover, the localisation of mitochondria at presynaptic sites can be altered during long‐term activity changes, dependent on the Ca2+‐sensing function of the mitochondrial trafficking protein, Miro1. In addition, we find that Miro1‐mediated activity‐dependent synaptic repositioning of mitochondria allows neurons to homeostatically alter the strength of presynaptic Ca2+ signals in response to prolonged changes in neuronal activity. Our results support a model in which mitochondria are recruited to presynaptic terminals during periods of raised neuronal activity and are involved in rescaling synaptic signals during homeostatic plasticity.  相似文献   

15.
目的:探讨光纤成像技术用于记录小鼠眶额皮层奖赏相关神经元活性变化的可行性。方法:应用光纤成像的方法记录自由活动小鼠在饮用糖水时,携带有钙离子荧光探针(GCaMP6m)的眶额皮层奖赏相关神经元的活性。首先,在小鼠的眶额皮层注射携带GCaMP6m的腺相关病毒,同时在相应位点植入提前做好的光纤陶瓷插芯;等待小鼠术后恢复,病毒表达2周。然后在记录前,给予小鼠36小时禁水处理并运用光纤成像记录接受糖水刺激的小鼠眶额皮层锥体神经元的反应活性。最后,记录数据读入matlab软件进行数据分析并对小鼠进行心脏灌流、取脑、脑组织冰冻切片并显微荧光成像观察记录位点是否正确,病毒是否正常表达。结果:成功记录到对小鼠施加糖水刺激时,其眶额皮层内与奖赏相关的神经元活性变化。数据分析结果用热度图和事件相关的平均线图来表示。组织学切片及成像结果证实记录位点正确,病毒正常表达。结论:光纤成像的记录方法可以监测自由活动的小鼠在饮用糖水时眶额皮层内奖赏相关神经元活性的变化。  相似文献   

16.
Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI.  相似文献   

17.
The nematode C. elegans is an excellent model organism for studying behavior at the neuronal level. Because of the organism's small size, it is challenging to deliver stimuli to C. elegans and monitor neuronal activity in a controlled environment. To address this problem, we developed two microfluidic chips, the 'behavior' chip and the 'olfactory' chip for imaging of neuronal and behavioral responses in C. elegans. We used the behavior chip to correlate the activity of AVA command interneurons with the worm locomotion pattern. We used the olfactory chip to record responses from ASH sensory neurons exposed to high-osmotic-strength stimulus. Observation of neuronal responses in these devices revealed previously unknown properties of AVA and ASH neurons. The use of these chips can be extended to correlate the activity of sensory neurons, interneurons and motor neurons with the worm's behavior.  相似文献   

18.
The understanding of neuronal processing of olfactory stimuli has been furthered by genetic studies and specialized imaging of particular neuronal populations. Selective optical imaging of odor-induced presynaptic and postsynaptic glomerular activity in the olfactory bulb/antennal lobe has visualized odorant-responsive receptor repertoires and shown a more confined odor image at the level of projection neurons compared to their olfactory receptor neuron input. Genetic tracing of projection neurons connected to particular glomeruli has revealed a somewhat dispersed spatial map of termination areas for these neurons both in insects and in vertebrates. Modifications of the glomerular odor map have resulted in altered percepts of the corresponding odors.  相似文献   

19.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

20.
Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号