首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in phenolics (PhC - phenolic compounds) measured as UV-absorbing compounds (UVAC) and their localization as well as growth, lipid peroxidation (TBARS level) and proline (Pro) level in three-day-old roots of seedlings (To stage) obtained from hydroprimed (H) and hydroprimed with melatonin (H-MEL) seeds after 2 days of chilling (5 °C) and 2 days of re-warming were examined. H and H-MEL resulted in inhibition of root growth under optimal conditions, but after re-warming, a positive effect of MEL was noted. The results also showed a positive MEL impact on TBARS level already after chilling and especially after re-warming. Exposure of Vigna radiata seedlings to chilling caused a significant increase in Pro level, especially in H-MEL roots, but after re-warming it drastically decreased. Under chilling stress, accumulation of UVAC also decreased. However, after re-warming it returned to the level observed in the roots grown constantly at 25 °C. Even if after re-warming of V. radiata seedlings only slight accumulation of total PhC was observed, phenolic deposits accumulating in the vacuoles of H-MEL roots were completely different from those in the vacuoles of the control and H roots. H-MEL application to the seeds resulted in a significant increase in small granular composite materials, while in the control and H roots, large oval deposits prevailed. Taken together, it is probable that all of these differences were connected with positive effects of MEL on chilled V. radiata seedlings after re-warming.  相似文献   

2.
Changes in ultrastructure of meristematic cells as well as growth and lipid peroxidation in roots of 3-d-old seedlings obtained from control (C), hydroprimed (H) and hydroprimed with melatonin (H-MEL) seeds after 2 d of incubation at 25 or 5 °C and 2 d of re-warming after chilling were investigated. Under 25 °C hydropriming (H and H-MEL) inhibited root growth, but after chilling and re-warming a positive MEL effect on root elongation was observed. The results show decreased lipid peroxidation in H-MEL roots already after chilling, but the significant extent of MEL impact was seen after re-warming. Similarly at the ultrastructural level, the protective effect of MEL at chilling was also visible, especially in plastids, and this effect maintained also after re-warming.  相似文献   

3.
The effect of LAB 173 711, a synthetic analogue of abscisic acid, has been evaluated on chilling-sensitive mung bean (Vigna radiata L. cv. Local V.) seedlings. Electrical conductivity was used for assessing the degree of chilling injury. Exposure of 8-day-old mung bean seedlings to 4°C for 35 h resulted in a 50% electrolyte leakage and induced irreversible chilling injury. The seedlings gained the best protection against chilling injury by pretreatment with LAB 173 711 (5 × 10–4 M) for 3 days. The protection effect could be sustained for 4 days. The LAB 173 711 pretreatment at 28°C did not cause a significant difference in the electrolyte leakage over the ambient temperature (28°C) control. Application of LAB 173 711 at 28°C reduced visible injury and the treated seedlings had higher ethylene production and respiration rate over the untreated control. LAB 173 711 helped maintain the integrity of the cell membrane and thus reduced the leakage of soluble sugar and amino acids. These combined effects led to a higher chilling tolerance in the mung bean seedlings.  相似文献   

4.
以西南地区具有代表性的16种绿肥植物为受体材料,采用培养皿药膜法研究了铁核桃(Juglans sigillata)根水浸提液对受体种子发芽率及幼苗鲜重、干重的化感效应;并进一步研究了铁核桃根、叶水浸提液和胡桃醌对化感效应存在明显差异的4种绿肥植物(绿豆、红三叶、白三叶、花生)种子萌发与幼苗生长以及抗氧化酶特性的影响,以筛选适宜中国西南地区核桃园种植的绿肥植物,探讨核桃根和凋落物对绿肥作物的化感作用机制。结果表明:(1)铁核桃根水浸提液对绿豆的发芽率没有影响,但对绿豆幼苗鲜重和干重有显著抑制作用,而对其他15种绿肥的发芽率和鲜重、干重均有抑制作用。(2)胡桃醌显著抑制绿豆种子萌发,而铁核桃根或叶水浸提液对绿豆种子萌发没有影响。(3)铁核桃根或叶水浸提液以及胡桃醌对绿肥植物幼苗生长的化感效应趋势一致,但核桃根或叶水浸提液的化感效应强于胡桃醌。(4)绿豆幼苗在铁核桃根或叶水浸提液以及胡桃醌处理下,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的活性均高于其他3种(红三叶、白三叶、花生)受体幼苗,表明绿豆清除活性氧能力高,细胞受损害程度较低,受化感作用影响最弱。研究认为,绿豆为适宜中国西南地区幼龄核桃园种植的间作绿肥植物。  相似文献   

5.
Heat shock increases chilling tolerance of mung bean hypocotyl tissue   总被引:5,自引:0,他引:5  
The effects of heat shock on the chilling tolerance of mung bean [Vigna radiata (L.) Wilczek] seedling tissue were studied by using two measurements of chilling injury: increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity and solute leakage. ACC oxidase activity (measured as ACC-induced ethylene production) of freshly excised mung bean hypocotyl segments was highly dependent on the temperature at which the seedlings were grown. However, this highly temperature-dependent level of ACC oxidase activity was probably a wound response since it was almost entirely eliminated by incubating the excised segments at 20°C for 3 h. In contrast, heating of excised segments to 40°C for up to 4 h resulted in a time-dependent increase in ACC oxidase activity which was sensitive to cycloheximide, indicating rapid protein synthesis during the heat treatment. ACC oxidase activity fell sharply during subsequent chilling at 2. 5°C. After 3 days of chilling, all treated segments, regardless of their initial ACC oxidase activity, showed a decline to the same low activity level and ACC oxidase activity continued to fall slowly for up to 9 days at 2. 5°C. Hypocotyl segments excised from seedlings held at 15°C showed no change in solute leakage, but leakage increased rapidly when seedlings were either chilled at 2. 5°C or heated to 32°C (just below the heat shock temperature). Chill-induced leakage from non-heat-shocked segments increased steadily with chilling duration and was unaffected by cycloheximide concentration up to day 6. Within the elevated rate of leakage on day 9, however, leakage was lower from segments exposed to 10 and 50 μM cycloheximide. Solute leakage was markedly reduced for up to 9 days when segments were heat shocked at 40°C for 3 or 4 h with or without 10 M cycloheximide, but the presence of 50 μM cycloheximide caused an initial doubling of solute leakage and a 3-fold increase after 3 days of chilling. Cycloheximide prevented formation of heat shock protection against chilling from the start at 50 μM and after 9 days at 10 μM. These results indicate that the protection afforded by heat shock against chilling damage is quantitative and probably involves protein synthesis.  相似文献   

6.
Amelioration of chilling stress by triadimefon in cucumber seedlings   总被引:11,自引:0,他引:11  
Cucumber (Cucumis satvus L.) seeds were imbibed in distilled water (control) and 10 mg l–1 triadimefon (TDM) for 10 h and then grown in a plant growth chamber with a light/dark temperature of 28/20 °C and a photoperiod of 14 h with a light intensity of 60 µmol m–2 s–1. 14-day-old seedlings were exposed to chilling stress with a light/dark temperature of 6/3 °C for 4 d. TDM improved the growth rate of cucumber seedling subjected to chilling stress and increased photosynthetic pigments contents and relative water content compared with the control at the end of chilling stress. Chilling stress decreased protein content and the activities of SOD, CAT and POD, but it increased proline, H2O2 and MDA accumulation, and relative electrical conductivity. TDM ameliorated the injury caused by chilling stress by preventing decreases in protein content and the activities of SOD, CAT and POD and by inhibiting increases in proline, H2O2 and MDA contents, and relative electrical conductivity, which suggested that TDM ameliorated the negative effect of chilling stress.  相似文献   

7.
The objective of this study was to analyze the mechanism of some physiological processes accompanying acquisition of sunflower (Helianthus annuus L.) chilling resistance due to seeds hydropriming in the presence of salicylic acid, jasmonic acid, 24-epibrassinolide followed exposition of seeds to short-term heat shock treatment. The seeds were hydroprimed at 25 °C in limited amounts of water or solution of salicylic or jasmonic acid at 10?2, 10?3 and 10?4 M concentration, 24-epibrassinolide at 10?6, 10?8 and 10?10 M concentration. The seeds were incubated for 2 days, subjected to short-term heat shock (45 °C, 2 h) and chilled for 21 days at 0 °C. Sunflower chilling susceptibility and physiological responses were evaluated according to the inhibition of radicle growth, the inhibition of the number of lateral roots formation, the activity of catalase and changes in soluble carbohydrates in seedlings developing for 72 h at 25 °C. Hydropriming and short-term heat shock application explicitly reduced inhibition of roots as well as lateral roots development by allowing the germinating seeds to recover from the growth-inhibiting effects of chilling. Seeds hydropriming in solutions containing salicylic acid, jasmonic acid and 24-epibrassinolide followed heat shock treatment additionally promoted the activity of catalase and sugars metabolism, which stimulated seedlings development and alleviated the decrease of F v/F m caused by chilling conditions. These beneficial effects contributed to increased resistance of sunflower seedlings to chilling stress. The present study demonstrated that the most profitable effect on reducing negative effect of chilling may be achieved by short-term heat shock applied during hydropriming in water supplemented with 24-epiBL (10?8 and 10?10 M) or salicylic acid (10?3 and 10?4 M).  相似文献   

8.
Effect of NaCl and Proline on Bean Seedlings Cultured in vitro   总被引:3,自引:0,他引:3  
Effects of NaCl (150 mM), proline (10 mM) and their combination on growth and contents of chlorophyll, proline and protein of bean (Phaseolus vulgaris cv. Kizilhaç) seedlings in vitro were investigated. NaCl decreased seedling growth. Proline added to control seedlings did not change seedling growth but decreased chlorophyll and increased protein contents. When proline added to NaCl-treated seedlings growth was increased in comparison with NaCl-treated only. Thus, proline alleviated salinity stress in bean seedlings.  相似文献   

9.
Intracellular pH and levels of ATP in intact root-tip cellsof mung bean (Vigna mungo [L.] Hepper) under low-temperaturestress were investigated in vivo by 31P nuclear magnetic resonance(31P-NMR) spectroscopy. Root-tips of 3 mm in length were excisedfrom seedlings of mung bean that had been chilled at 0°Cafter grown at 30°C. Chilling for longer than 12 h causedchanges in the intracellular pH and decreased levels of ATPin the seedlings. The level of ATP recovered within 30 min butlittle change in pH was observed when samples were rewarmedto 20° C after chilling at 5°C. However, after chillingfor longer than 48 h, neither the intracellular pH nor the levelof ATP was restored. These results suggest that a decline in the activity of tonoplastH+-ATPase, induced by chillings, might be a significant earlyevent in cold-induced injury that leads to cell damage. (Received October 27, 1994; Accepted May 10, 1995)  相似文献   

10.
The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.  相似文献   

11.
Mung bean CYP90A2 is a putative brassinosteroid (BR) synthetic gene that shares 77% identity with the Arabidopsis CPD gene. It was strongly suppressed by chilling stress. This implies that exogenous treatment with BR could allow the plant to recover from the inhibited growth caused by chilling. In this study, we used proteomics to investigate whether the mung bean epicotyl can be regulated by brassinosteroids under conditions of chilling stress. Mung bean epicotyls whose growth was initially suppressed by chilling partly recovered their ability to elongate after treatment with 24-epibrassinolde; 17 proteins down-regulated by this chilling were re-up-regulated. These up-regulated proteins are involved in methionine assimilation, ATP synthesis, cell wall construction and the stress response. This is consistent with the re-up-regulation of methionine synthase and S-adenosyl-L-methionine synthetase, since chilling-inhibited mung bean epicotyl elongation could be partially recovered by exogenous treatment with DL-methionine. This is the first proteome established for the mung bean species. The regulatory relationship between brassinosteroids and chilling conditions was investigated, and possible mechanisms are discussed herein.  相似文献   

12.
Regulation of proline accumulation in plants under chilling stress remains unclear. In this paper, we treated Jatropha curcas seedlings under chilling stress with exogenous calcium chloride (CaCl2), the plasma membrane Ca2+-channel blocker lanthanum chloride (LaCl3), calmodulin antagonists, chlorpromazine (CPZ), and trifluoperazine (TFP) and investigated the effects of calcium and calmodulin (CaM) on proline accumulation and chilling tolerance. The results showed that CaCl2 treatment significantly enhanced chilling stress-induced proline accumulation. CaCl2 also induced an almost immediate and rapid increase of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and glutamate dehydrogenase activities, the key enzymes in the glutamate pathway of proline biosynthesis, and up-regulated P5CS expression, but it decreased the activity of proline dehydrogenase (ProDH), a key enzyme of proline degradation, and inhibited ProDH expression. Treatment with LaCl3, CPZ, and TFP exhibited the opposite effects to those by CaCl2 treatment. Moreover, CaCl2, LaCl3, CPZ, and TFP had little effect on the activities of ornithine aminotransferase and arginase, the key enzymes in the ornithine pathway of proline biosynthesis. These results indicated that Ca2+-CaM might be involved in signal transduction events, leading to proline accumulation in J. curcas seedlings under chilling stress, and that Ca2+-induced proline accumulation is a combined result of the activation of the glutamate pathways of proline biosynthesis and the simultaneous inhibition of the proline degradation pathway. In addition, CaCl2 treatment increased tissue vitality, decreased the content of the lipid peroxidation product malondialdehyde (MDA), and alleviated electrolyte leakage in J. curcas seedlings under chilling stress, indicating that exogenous Ca2+ can enhance chilling tolerance, and proline might be a key factor in this increased chilling tolerance.  相似文献   

13.
Several naturally occurring amino- and imino-acids having structuresclosely related to those of some protein constituents have beentested for growth inhibitory activity upon germinating seeds,particularly on mung bean (Phaseolus aureus). Azetidine-2-carboxylicacid, a structural analogue of proline, and a-(methylenecyclopropyl)glycine,related to leucine, produced a marked inhibition of radiclegrowth, and quite low concentrations of the former were lethalto the seedlings. The potent action of azetidine-2-carboxylicacid was shown to depend upon its incorporation into plant proteins,where it replaced an equivalent amount of proline. Growth inhibitioncould be reduced by providing proline to the seeds togetherwith the analogue. The effect upon protein structure and enzymeactivity resulting from the incorporation of azetidine-2-carboxylicacid is discussed.  相似文献   

14.
The effects of low temperature (5 °C and 12°C) and droughttreatments on leaf soluble protein content and free amino acidcontent have been investigated in four species, which were rankedaccording to chilling-sensitivity: pea (chill-resistant), mungbean (highly chill-sensitive), and tomato and french bean (intermediatechilling-sensitivity). Drought treatment caused a 30–40% decrease in proteinlevels, and in all but the mung bean, a 100–200% increasein free amino acid concentration. Four days chilling at 5°C,85% r.h. caused leaf water content to decrease by almost 50%in the mung bean, but by only approximately 6–7% in theother three species. During this treatment the leaf solubleprotein content decreased in all four species although the decreasewas greatest and most rapid in the mung bean, commencing with8 h of chilling (coinciding closely with the onset of waterloss), and decreasing by over 80% after 4 d. In the chill-sensitivespecies (but not in the pea) the decrease in protein contentwas accompanied by an increase in free amino acid content. However,on a mgg–1 dry wt. basis, this increase was insufficientto account for all the protein lost. When plants of each specieswere chilled at 5°C, 100% r.h., water loss was greatly reducedor prevented and there was no significant decrease in leaf solubleprotein. It is concluded that the protein decrease which occurredat 5°C, 85% r.h., was a response to water loss and not thedirect result of low temperature. However, chilling at 100%r.h. did cause an increase in free amino acid content of thechill-sensitive species, suggesting that this was a direct responseto low temperature. Although drought treatment caused a 6–20 fold increasein free proline content in the leaves of the four species examined,chilling (5°C) and chill-hardening (12°C) caused littlechange in free proline content, indicating that the accumulationof this ‘protective’ amino acid is unlikely to contributeto the effectiveness of the chill-hardening treatment. Key words: Low Temperature, Drought, Leaf soluble protein.content, Amino acids  相似文献   

15.
16.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P N) for the both studied plant species was inhibited at 8 °C. P N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to P N. Measurements of ΦPS2CO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2CO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance.  相似文献   

17.
18.
Three mineral oils, BSO, EWOS and E9267 and one vegetable oil (mustard oil), did not appreciably inhibit the mycelial growth of Rhizoctonia solani. However, treatment of 100 g seeds of mung bean with 2 ml EWOS and E9267 oils controlled more than 90% of the pre- and post-emergence damping-off and protected seedlings in soil inoculated with R. solani 5 days after sowing. Soaking seeds in solutions of these oils or drenching the soil did not control damping-off. Mustard oil controlled only pre-emergence damping-off.  相似文献   

19.
Phytochrome Control of Another Phytochrome-mediated Process   总被引:3,自引:2,他引:1       下载免费PDF全文
Tanada T 《Plant physiology》1972,49(4):560-562
The phytochrome-mediated attachment of root tips of mung bean (Phaseolus aureus) and barley (Hordeum vulgare) to glass is affected by the prior exposure of hydrated seeds or seedlings to red or far red radiation. Prior irradiation of seeds or seedlings of mung bean with red light promotes attachment, while far red light promotes detachment of root tips. Similar exposure of barley seeds and seedlings to red light accentuates detachment, while far red light accentuates attachment of root tips. Red-far red light reversibility of the pretreatments indicates phytochrome control.  相似文献   

20.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号