首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The alphav integrins present on the membrane of numerous cells, mediate attachment to matrix proteins, cell proliferation, migration and survival. We studied the expression of alphav integrinis and CD47 (a beta3 chain integrin associated protein) in various forms of glomerulonephritis (GN) characterized by mesangial proliferation and/or increased mesangial matrix. In normal glomeruli, epithelial cells expressed alphavbeta3, alphavbeta5 and CD47; endothelial cells expressed alpha5beta1 and CD47; mesangial cells expressed alphavbeta5, CD47, and to a less extent alphavbeta3. In acute post infectious GN (APIGN), membrano-proliferative GN (MPGN) and diabetic nephropathy(DN), we observed that the beta3 chain, normally expressed by mesangial cells, was not detectable in the mesangium while its expression by epithelial cells was not modified. Parallel to the disappearance of alphavbeta3, the CD47 expression was decreased on the mesangial cells in MPGN, APIGN and DN. The expression of alphavbeta5 was clearly increased on podocytes and on proliferating mesangial cells in APIGN. By contrast, the mesangial expression of alphavbeta was normal or decreased in DN. The alpha5 chain of integrin, absent on normal mesangial cell, was expressed on proliferating mesangial cells in MPGN and APIGN. Thus, we observed modifications of alphavbeta3 and alphavbeta5 expression during human GN. The modulations of alphavbeta3 and alphavbeta5 expression differed according to the different glomerular cell types and were not parallel in glomerular cells: alphavbeta3 was decreased (and alphavbeta5 unchanged) on proliferating mesangial cells and alphavbeta5 was increased (and alphavbeta3 unchanged) in podocytes. This may reflect the existence of two distinct regulatory pathways.  相似文献   

2.
Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8(+) T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a "self" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.  相似文献   

3.
CD47, a cell surface transmembrane Ig superfamily member, is an extracellular ligand for signal regulatory protein (SIRPalpha). Interactions between CD47 and SIRPalpha regulate many important immune cell functions including neutrophil (PMN) transmigration. Here we report identification of a novel function-blocking peptide, CERVIGTGWVRC, that structurally mimics an epitope on CD47 and binds to SIRPalpha. The CERVIGTGWVRC sequence was identified by panning phage display libraries on the inhibitory CD47 mAb, C5D5. In vitro PMN migration assays demonstrated that peptide CERVIGTGWVRC specifically inhibited PMN migration across intestinal epithelial monolayers and matrix in a dose-dependent fashion. Further studies using recombinant proteins indicated that the peptide specifically blocks CD47 and SIRPalpha binding in a dose-dependent fashion. Protein binding assays using SIRPalpha domain-specific recombinant proteins demonstrated that this peptide directly bound to the distal-most Ig loop of SIRPalpha, the same loop where CD47 binds. In summary, these findings support the relevance of CD47-SIRPalpha interactions in regulation of PMN transmigration and provide structural data predicting the key residues involved on the surface of CD47. Such peptide reagents may be useful for studies on experimental models of inflammation and provide a template for the design of anti-inflammatory agents.  相似文献   

4.
Integrin-associated protein (CD47) is a multiply membrane spanning member of the immunoglobulin superfamily that regulates some adhesion-dependent cell functions through formation of a complex with alphavbeta3 integrin and trimeric G proteins. Cholesterol is critical for the association of the three protein components of the supramolecular complex and for its signaling. The multiply membrane spanning domain of IAP is required for complex formation because it binds cholesterol. The supramolecular complex forms preferentially in glycosphingolipid-enriched membrane domains. Binding of mAb 10G2 to the IAP Ig domain, previously shown to be required for association with alphavbeta3, is affected by both the multiply membrane spanning domain and cholesterol. These data demonstrate that cholesterol is an essential component of the alphavbeta3/IAP/G protein signaling complex, presumably acting through an effect on IAP conformation.  相似文献   

5.
Cross-presentation of cell-associated Ag is thought to involve receptor-mediated uptake of apoptotic cells by dendritic cells (DC), and studies with human DC strongly implicate the endocytic receptor CD36 and the integrins alpha(v)beta(3) and/or alpha(v)beta(5) in this process. In the mouse, cross-presentation was recently shown to be a function of CD8alpha(+) DC. Here we report that CD36 is expressed on CD8alpha(+), but not on CD8alpha(-), DC. To address the role of CD36 in cross-presentation we compared CD36(-/-) and CD36(+/+) H-2(b) DC for their ability to stimulate naive OT-1 T cells specific for OVA plus H-2K(b) in the presence of OVA-loaded MHC-mismatched splenocytes as a source of cell-associated Ag for cross-presentation. Surprisingly, no difference was seen between CD36(-/-) and CD36(+/+) CD8alpha(+) DC in their ability to cross-present cell-associated OVA or to capture OVA-bearing cells. Furthermore, the proliferation of CFSE-labeled OT-1 cells in response to OVA cross-presentation in vivo was normal in CD36(-/-) bone marrow chimeras, also arguing against a necessary role for CD36 in cross-presentation by DC or other APC. DC doubly deficient for beta(3) and beta(5) integrins were similarly unimpaired in their ability to cross-present OVA-bearing cells in vitro. These data demonstrate that in the mouse, receptors other than CD36 or beta(3) and beta(5) integrins can support the specialized cross-presenting function of CD8alpha(+) DC.  相似文献   

6.
Human parechovirus 1 (HPEV1) displays an arginine-glycine-aspartic acid (RGD) motif in the VP1 capsid protein, suggesting integrins as candidate receptors for HPEV1. A panel of monoclonal antibodies (MAbs) specific for integrins alphavbeta3, alphavbeta1, and alphavbeta5, which have the ability to recognize the RGD motif, and also a MAb specific for integrin alpha2beta1, an integrin that does not recognize the RGD motif, were tested on A549 cells. Our results showed that integrin alphav-specific MAb reduced infectivity by 85%. To specify which alphav integrins the virus utilizes, we tested MAbs specific to integrins alphavbeta3 and alphavbeta1 which reduced infectivity significantly, while a MAb specific for integrin alphavbeta5, as well as the MAb specific for alpha2beta1, showed no reduction. When a combination of MAbs specific for integrins alphavbeta3 and alphavbeta1 were used, virus infectivity was almost completely inhibited; this shows that integrins alphavbeta3 and alphavbeta1 are utilized by the virus. We therefore proceeded to test whether alphav integrins' natural ligands fibronectin and vitronectin had an effect on HPEV1 infectivity. We found that vitronectin reduced significantly HPEV1 infectivity, whereas a combination of vitronectin and fibronectin abolished infection. To verify the use of integrins alphavbeta3 and alphavbeta1 as HPEV1 receptors, CHO cells transfected and expressing either integrin alphavbeta3 or integrin alphavbeta1 were used. It was shown that the virus could successfully infect these cells. However, in immunoprecipitation experiments using HPEV1 virions and allowing the virus to bind to solubilized A549 cell extract, we isolated and confirmed by Western blotting the alphavbeta3 heterodimer. In conclusion, we found that HPEV1 utilises both integrin alphavbeta3 and alphavbeta1 as receptors; however, in cells that express both integrins, HPEV1 may preferentially bind integrin alphavbeta3.  相似文献   

7.
CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti‐CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive‐like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 463–484, 2015  相似文献   

8.
Novel alphavbeta3 antagonists based on the N-aryl-gamma-lactam scaffold were prepared. SAR studies led to the identification of potent antagonists for alphavbeta3 receptor with excellent selectivity against the structurally related alpha(IIb)beta3 receptor. Additional interactions of N-aryl-gamma-lactam derivatives with alphavbeta3 were found when compared to c(-RGDf[NMe]V-) peptide antagonist. The effects of the conformation and configuration of the gamma-lactam core on the binding were also assessed.  相似文献   

9.
The synthesis and SAR of a new class of piperidine-based alphavbeta3/alphavbeta5 integrin antagonists is described. Replacement of an amide bond in a prototype isonipecotamide by a C-C isostere, and adjustment of the spacer length between the carboxylic acid and basic moieties, led to low nanomolar antagonists of alphavbeta3 and/or alphavbeta5 integrins with excellent selectivity versus alpha(IIb)beta3.  相似文献   

10.
Neutrophils release reactive oxygen species (ROS) as part of the innate inflammatory immune response. Phosphoinositide 3-kinase gamma (PI3Kgamma), which is induced by the bacterial peptide N-formylmethionyl-leucyl-phenylalanine (fMLP), has been identified as an essential intracellular mediator of ROS production. However, the complex signalling reactions that link PI3Kgamma with ROS synthesis by NADPH oxidase have not yet been described in detail. We found that activation of neutrophils by fMLP triggers the association of PI3Kgamma with protein kinase Calpha (PKCalpha). Specific inhibition of PI3Kgamma suppresses fMLP-mediated activation of PKCalpha activity and ROS production, suggesting that the protein kinase activity of PI3Kgamma is involved. Our data suggest that the direct interaction of PI3Kgamma with PKCalpha forms a discrete regulatory module of fMLP-dependent ROS production in neutrophils.  相似文献   

11.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

12.
CD47, a cell surface glycoprotein, plays an important role in modulating neutrophil (PMN) migration across endothelial and epithelial monolayers. Here we show that anti-CD47 monoclonal antibodies (mAbs) delay PMN migration across collagen-coated filters or T84 epithelial monolayers toward the chemoattractant formylmethionylleucylphenylalanine (fMLP). Despite delayed transmigration by anti-CD47 mAbs, the numbers of PMN migrating across in either condition were the same as in the presence of control non-inhibitory mAbs. Cell surface labeling and immunoprecipitation demonstrated upregulation of CD47 to the PMN cell surface with kinetics similar to those of the transmigration response. Subcellular fractionation studies revealed redistribution of CD47 from intracellular compartments that co-sediment with secondary granules to plasma membrane-containing fractions after fMLP stimulation. Experiments performed to investigate potential signaling pathways revealed that inhibition of tyrosine phosphorylation with genistein reversed the anti-CD47-mediated PMN migration delay, whereas inhibition of phosphatidylinositol 3-kinase only partially reversed anti-CD47 effects that correlated with a rapid increase in PMN cell surface CD47. Analysis of the contribution of epithelial-expressed CD47 to PMN transmigration revealed that PMN migration across CD47-deficient epithelial monolayers (CaCO2) was significantly increased after stable transfection with CD47. These results suggest that cell surface CD47 and downstream tyrosine phosphorylation signaling events regulate, in part, the rate of PMN migration during the inflammatory response.  相似文献   

13.
SHPS-1 (SH2-domain bearing protein tyrosine phosphatase (SHP) substrate-1), a member of the inhibitory-receptor superfamily that is abundantly expressed in macrophages and neural tissue, appears to regulate intracellular signaling events downstream of receptor protein-tyrosine kinases and integrin-extracellular matrix molecule interactions. To investigate the function of SHPS-1 in a hematopoietic cell line, SHPS-1 was expressed in Ba/F3 cells, an IL-3-dependent pro-B-cell line that lacks endogenous SHPS-1 protein. Interestingly, expression of either SHPS-1, or a mutant lacking the intracellular domain of SHPS-1 (DeltaCT SHPS-1), resulted in the rapid formation of macroscopic Ba/F3 cell aggregates. As the integrin-associated protein/CD47 was shown to be a SHPS-1 ligand in neural cells, we investigated whether CD47 played a role in the aggregation of SHPS-1-expressing Ba/F3 cells. In support of this idea, aggregate formation was inhibited by an anti-CD47 Ab. Furthermore, erythrocytes from control, but not from CD47-deficient mice, were able to form rosettes on SHPS-1-expressing Ba/F3 cells. Because erythrocytes do not express integrins, this result suggested that SHPS-1-CD47 interactions can take place in the absence of a CD47-integrin association. We also present evidence that the amino-terminal Ig domain of SHPS-1 mediates the interaction with CD47. Although SHPS-1-CD47 binding likely triggers bidirectional intracellular signaling processes, these results demonstrate that this interaction can also mediate cell-cell adhesion.  相似文献   

14.
Plasmepsin II (PM II) is an aspartic protease active in hemoglobin (Hb) degradation in the protozoan parasite Plasmodium falciparum. A fluorescence-quenched octapeptide substrate based on the initial hemoglobin cleavage site is recognized well by PM II. C-terminal extension of this peptide has little effect, but N-terminal extension results in higher maximal velocity and dramatic concentration-dependent substrate inhibition. This inhibition, but not the rate stimulation, depends on the presence of a DABCYL group on the peptide N terminus. Using site-directed mutagenesis, we have identified PM II residues that interact with N-terminal amino acids of peptide substrates. The same residues influence degradation of Hb by PM II. Cathepsin E (CatE), a related mammalian aspartic protease, is also stimulated by N-terminally extended substrates. This suggests that distal substrate interactions as far out as P6 may be a general property of aspartic proteases and may be important in substrate and inhibitor recognition. Although PM II and CatE are similar in their ability to cleave Hb-based peptides and Hb alpha-chains, CatE is not able to degrade native Hb, which is a substrate for PM II. Based on these results, we propose that PM II may have the special feature of being a Hb denaturase.  相似文献   

15.
The identification of protein mutations that enhance binding affinity may be achieved by computational or experimental means, or by a combination of the two. Sources of affinity enhancement may include improvements to the net balance of binding interactions of residues forming intermolecular contacts at the binding interface, such as packing and hydrogen-bonding interactions. Here we identify noncontacting residues that make substantial contributions to binding affinity and that also provide opportunities for mutations that increase binding affinity of the TEM1 beta-lactamase (TEM1) to the beta-lactamase inhibitor protein (BLIP). A region of BLIP not on the direct TEM1-binding surface was identified for which changes in net charge result in particularly large increases in computed binding affinity. Some mutations to the region have previously been characterized, and our results are in good correspondence with this results of that study. In addition, we propose novel mutations to BLIP that were computed to improve binding significantly without contacting TEM1 directly. This class of noncontacting electrostatic interactions could have general utility in the design and tuning of binding interactions.  相似文献   

16.
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.  相似文献   

17.
A major challenge confronting developmental cell biologists is to understand how individual cell behaviors lead to global tissue organization. Taking advantage of an endothelial cell-specific marker and scanning time-lapse microscopy, we have examined the formation of the primary vascular pattern during avian vasculogenesis. Five types of distinguishable endothelial cell motion are observed during formation of a vascular plexus: (1) global tissue deformations that passively convect endothelial cells; (2) vascular drift, a sheet-like medial translocation of the entire vascular plexus; (3) structural rearrangements, such as vascular fusion; (4) individual cell migration along existing endothelial structures; and (5) cell process extension into avascular areas, resulting in new links within the plexus. The last four types of motion are quantified and found to be reduced in the presence of an alphavbeta3 integrin inhibitor. These dynamic cell motility data result in new hypotheses regarding primordial endothelial cell behavior during embryonic vasculogenesis.  相似文献   

18.
《Cytotherapy》2020,22(5):276-290
Background aimsKey obstacles in human iNKT cell translational research and immunotherapy include the lack of robust protocols for dependable expansion of human iNKT cells and the paucity of data on phenotypes in post-expanded cells.MethodsWe delineate expansion methods using interleukin (IL)-2, IL-7 and allogeneic feeder cells and anti-CD2/CD3/CD28 stimulation by which to dependably augment Th2 polarization and direct cytotoxicity of human peripheral blood CD3+Vα24+Vβ11+ iNKT cells.ResultsGene and protein expression profiling demonstrated augmented Th2 cytokine secretion (IL-4, IL-5, IL-13) in expanded iNKT cells stimulated with anti-CD2/CD3/CD28 antibodies. Cytotoxic effector molecules including granzyme B were increased in expanded iNKT cells after CD2/CD3/CD28 stimulation. Direct cytotoxicity assays using unstimulated expanded iNKT cell effectors revealed α-galactosyl ceramide (α-GalCer)-dependent killing of the T-ALL cell line Jurkat. Moreover, CD2/CD3/CD28 stimulation of expanded iNKT cells augmented their (α-GalCer-independent) killing of Jurkat cells. Co-culture of expanded iNKT cells with stimulated responder cells confirmed contact-dependent inhibition of activated CD4+ and CD8+ responder T cells.DiscussionThese data establish a robust protocol to expand and novel pathways to enhance Th2 cytokine secretion and direct cytotoxicity in human iNKT cells, findings with direct implications for autoimmunity, vaccine augmentation and anti-infective immunity, cancer immunotherapy and transplantation.  相似文献   

19.
20.
CD47 signals T cell death.   总被引:10,自引:0,他引:10  
Activation-induced death of T cells regulates immune responses and is considered to involve apoptosis induced by ligation of Fas and TNF receptors. The role of other receptors in signaling T cell death is less clear. In this study we demonstrate that activation of specific epitopes on the Ig variable domain of CD47 rapidly induces apoptosis of T cells. A new mAb, Ad22, to this site induces apoptosis of Jurkat cells and CD3epsilon-stimulated PBMC, as determined by morphological changes, phosphatidylserine exposure on the cell surface, uptake of propidium iodide, and true counts by flow cytometry. In contrast, apoptosis was not observed following culture with anti-CD47 mAbs 2D3 or B6H12 directed to a distant or closely adjacent region, respectively. CD47-mediated cell death was independent of CD3, CD4, CD45, or p56lck involvement as demonstrated by studies with variant Jurkat cell lines deficient in these signaling pathways. However, coligation of CD3epsilon and CD47 enhanced phosphatidylserine externalization on Jurkat cells with functional CD3. Furthermore, normal T cells required preactivation to respond with CD47-induced apoptosis. CD47-mediated cell death appeared to proceed independent of Fas or TNF receptor signaling and did not involve characteristic DNA fragmentation or requirement for IL-1beta-converting enzyme-like proteases or CPP32. Taken together, our data demonstrate that under appropriate conditions, CD47 activation results in very rapid T cell death, apparently mediated by a novel apoptotic pathway. Thus, CD47 may be critically involved in controlling the fate of activated T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号