首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARF6 GTPase is a conserved regulator of membrane trafficking and actin-based cytoskeleton dynamics at the leading edge of migrating cells. A key determinant of ARF6 function is the lifetime of the GTP-bound active state, which is orchestrated by GTPase-activating protein (GAP) and GTP-GDP exchanging factor. However, very little is known about the molecular mechanisms underlying ARF6-mediated cell migration. To systematically analyze proteins that regulate ARF6 activity during cell migration, we performed a proteomic analysis of proteins selectively bound to active ARF6 using mass spectrometry and identified a novel ARF6-specific GAP, ACAP4. ACAP4 encodes 903 amino acids and contains two coiled coils, one pleckstrin homology domain, one GAP motif, and two ankyrin repeats. Our biochemical characterization demonstrated that ACAP4 has a phosphatidylinositol 4,5-bisphosphate-dependent GAP activity specific for ARF6. The co-localization of ACAP4 with ARF6 occurred in ruffling membranes formed upon AIF(4) and epidermal growth factor stimulation. ACAP4 overexpression limited the recruitment of ARF6 to the membrane ruffles in the absence of epidermal growth factor stimulation. Expression of GTP hydrolysis-resistant ARF6(Q67L) resulted in accumulations of ACAP4 and ARF6 in the cytoplasmic membrane, suggesting that GTP hydrolysis is required for the ARF6-dependent membrane remodeling. Significantly the depletion of ACAP4 by small interfering RNA or inhibition of ARF6 GTP hydrolysis by overexpressing GAP-deficient ACAP4 suppressed ARF6-dependent cell migration in wound healing, demonstrating the importance of ACAP4 in cell migration. Thus, our study sheds new light on the biological function of ARF6-mediated cell migration.  相似文献   

2.
Siu KY  Yu MK  Wu X  Zong M  Roth MG  Chan HC  Yu S 《PloS one》2011,6(4):e18458

Background

The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.

Principal Findings

As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.

Conclusions

ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein.  相似文献   

3.
Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics.  相似文献   

4.
Epithelial cell scattering encompasses the dissolution of intercellular junctions, cell-cell dissociation, cell spreading, and motility. The Rac1 and ARF6 GTPases have been shown to regulate one or more of these aforementioned processes. In fact, activated Rac1 has been shown to promote cell-cell adhesion as well as to enhance cell motility, leading to conflicting reports on the effect of Rac1 activation on epithelial cell motility. In this study, we have examined the activation profiles of endogenous Rac1 and ARF6 during the sequential stages of epithelial cell scattering. Using Madin-Darby canine kidney cells treated with hepatocyte growth factor/scatter factor or cell lines stably expressing activated v-Src, we show that Rac1 and ARF6 exhibit distinct activation profiles during cell scattering. We have found that an initial ARF6-dependent decrease in the levels of Rac1-GTP is necessary to induce cell-cell dissociation. This is followed by a steady increase in Rac1 and ARF6 activation and cell migration. In sum, this study documents the progression of ARF6 and Rac1 activities during epithelial cell scattering.  相似文献   

5.
ARF6 GTPase is an important regulator of membrane trafficking and actin-based cytoskeleton dynamics active at the leading edge of migrating cells. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Our recent proteomic analyses of ARF6 effectors have identified a novel ARF6 GTPase-activating protein, ACAP4, essential for EGF-induced cell migration. However, molecular mechanisms underlying ACAP4-mediated cell migration have remained elusive. Here, we show that ACAP4 regulates integrin β1 dynamics during EGF-stimulated cell migration by interaction with Grb2. Our biochemical study shows that EGF stimulation induces phosphorylation of tyrosine 733, which enables ACAP4 to bind Grb2. This interaction of ACAP4 with Grb2 regulates integrin β1 recycling to the plasma membrane. Importantly, knockdown of ACAP4 by siRNA or overexpression of ACAP4 decreased recycling of integrin β1 to the plasma membrane and reduced integrin-mediated cell migration. Taken together, these results suggest a novel function for ACAP4 in the regulation of cell migration through controlling integrin β1 dynamics.  相似文献   

6.
Coat complexes sort protein cargoes into vesicular transport pathways. An emerging class of coat components has been the GTPase-activating proteins (GAPs) that act on the ADP-ribosylation factor (ARF) family of small GTPases. ACAP1 (ArfGAP with coiled-coil, ankyrin repeat, and PH domains protein 1) is an ARF6 GAP that also acts as a key component of a recently defined clathrin complex for endocytic recycling. Phosphorylation by Akt has been shown to enhance cargo binding by ACAP1 in explaining how integrin recycling is an example of regulated transport. We now shed further mechanistic insights into how this regulation is achieved at the level of cargo binding by ACAP1. We initially defined a critical sequence in the cytoplasmic domain of integrin β1 recognized by ACAP1 and showed that this sequence acts as a recycling sorting signal. We then pursued a combination of structural, modeling, and functional studies, which suggest that phosphorylation of ACAP1 relieves a localized mechanism of autoinhibition in regulating cargo binding. Thus, we have elucidated a key regulatory juncture that controls integrin recycling and also advanced the understanding of how regulated cargo binding can lead to regulated transport.  相似文献   

7.
The GTPase Arf6 regulates multiple cellular processes, including endocytosis, secretion, phagocytosis, cell adhesion, and cell migration [1, 2]. The Arf6-specific GAP ACAP1 is a negative regulator of Arf6-mediated signaling [3-7]. However, regulation of ACAP1- and Arf6-mediated signaling by other cellular proteins is not well understood. GULP/CED-6 is a phosphotyrosine binding (PTB)-domain-containing adaptor protein linked to engulfment of apoptotic cells [8-13] and to cholesterol homeostasis [14]. Here, we identify a novel role for GULP as a positive regulator of Arf6. Knockdown of GULP decreased cellular Arf6-GTP, whereas GULP overexpression increased cellular Arf6-GTP. At the mechanistic level, GULP influenced Arf6 at four levels. First, GULP bound directly to GDP-bound Arf6 via its PTB domain. Second, GULP associated with the Arf6-GAP ACAP1 at endogenous levels. Third, GULP reversed the Arf6-GTP decrease induced by ACAP1, and countered the ACAP1-mediated inhibition of cell migration. Fourth, GULP, ACAP1, and GDP-bound Arf6 were part of a tripartite complex, suggesting sequestration of ACAP1 as one mechanism of GULP action. Taken together, these data identify GULP as a modifier of cellular Arf6-GTP through regulation of ACAP1. Because PTB-domain-containing adaptor proteins influence endocytosis and trafficking of membrane proteins and cell migration [15, 16], our data support a model wherein PTB-domain-containing adaptor proteins regulate Arf family proteins.  相似文献   

8.
Migration of epithelial cells is essential for tissue morphogenesis, wound healing, and metastasis of epithelial tumors. Here we show that ARNO, a guanine nucleotide exchange factor for ADP-ribosylation factor (ARF) GTPases, induces Madin-Darby canine kidney epithelial cells to develop broad lamellipodia, to separate from neighboring cells, and to exhibit a dramatic increase in migratory behavior. This transition requires ARNO catalytic activity, which we show leads to enhanced activation of endogenous ARF6, but not ARF1, using a novel pulldown assay. We further demonstrate that expression of ARNO leads to increased activation of endogenous Rac1, and that Rac activation is required for ARNO-induced cell motility. Finally, ARNO-induced activation of ARF6 also results in increased activation of phospholipase D (PLD), and inhibition of PLD activity also inhibits motility. However, inhibition of PLD does not prevent activation of Rac. Together, these data suggest that ARF6 activation stimulates two distinct signaling pathways, one leading to Rac activation, the other to changes in membrane phospholipid composition, and that both pathways are required for cell motility.  相似文献   

9.
The GTP-binding protein ADP-ribosylation factor 6 (Arf6) regulates endosomal membrane trafficking and the actin cytoskeleton in the cell periphery. GTPase-activating proteins (GAPs) are critical regulators of Arf function, controlling the return of Arf to the inactive GDP-bound state. Here, we report the identification and characterization of two Arf6 GAPs, ACAP1 and ACAP2. Together with two previously described Arf GAPs, ASAP1 and PAP, they can be grouped into a protein family defined by several common structural motifs including coiled coil, pleckstrin homology, Arf GAP, and three complete ankyrin-repeat domains. All contain phosphoinositide-dependent GAP activity. ACAP1 and ACAP2 are widely expressed and occur together in the various cultured cell lines we examined. Similar to ASAP1, ACAP1 and ACAP2 were recruited to and, when overexpressed, inhibited the formation of platelet-derived growth factor (PDGF)-induced dorsal membrane ruffles in NIH 3T3 fibroblasts. However, in contrast with ASAP1, ACAP1 and ACAP2 functioned as Arf6 GAPs. In vitro, ACAP1 and ACAP2 preferred Arf6 as a substrate, rather than Arf1 and Arf5, more so than did ASAP1. In HeLa cells, overexpression of either ACAP blocked the formation of Arf6-dependent protrusions. In addition, ACAP1 and ACAP2 were recruited to peripheral, tubular membranes, where activation of Arf6 occurs to allow membrane recycling back to the plasma membrane. ASAP1 did not inhibit Arf6-dependent protrusions and was not recruited by Arf6 to tubular membranes. The additional effects of ASAP1 on PDGF-induced ruffling in fibroblasts suggest that multiple Arf GAPs function coordinately in the cell periphery.  相似文献   

10.
An ACAP1-containing clathrin coat complex for endocytic recycling   总被引:1,自引:1,他引:0       下载免费PDF全文
Whether coat proteins play a widespread role in endocytic recycling remains unclear. We find that ACAP1, a GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF) 6, is part of a novel clathrin coat complex that is regulated by ARF6 for endocytic recycling in two key physiological settings, stimulation-dependent recycling of integrin that is critical for cell migration and insulin-stimulated recycling of glucose transporter type 4 (Glut4), which is required for glucose homeostasis. These findings not only advance a basic understanding of an early mechanistic step in endocytic recycling but also shed key mechanistic insights into major physiological events for which this transport plays a critical role.  相似文献   

11.
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.  相似文献   

12.
ASAP1 (ADP ribosylation factor [ARF]- GTPase-activating protein [GAP] containing SH3, ANK repeats, and PH domain) is a phospholipid-dependent ARF-GAP that binds to and is phosphorylated by pp60(Src). Using affinity chromatography and yeast two-hybrid interaction screens, we identified ASAP1 as a major binding partner of protein tyrosine kinase focal adhesion kinase (FAK). Glutathione S-transferase pull-down and coimmunoprecipitation assays showed the binding of ASAP1 to FAK is mediated by an interaction between the C-terminal SH3 domain of ASAP1 with the second proline-rich motif in the C-terminal region of FAK. Transient overexpression of wild-type ASAP1 significantly retarded the spreading of REF52 cells plated on fibronectin. In contrast, overexpression of a truncated variant of ASAP1 that failed to bind FAK or a catalytically inactive variant of ASAP1 lacking GAP activity resulted in a less pronounced inhibition of cell spreading. Transient overexpression of wild-type ASAP1 prevented the efficient organization of paxillin and FAK in focal adhesions during cell spreading, while failing to significantly alter vinculin localization and organization. We conclude from these studies that modulation of ARF activity by ASAP1 is important for the regulation of focal adhesion assembly and/or organization by influencing the mechanisms responsible for the recruitment and organization of selected focal adhesion proteins such as paxillin and FAK.  相似文献   

13.
The ADP-ribosylation factor (Arf) GTPases are important regulators of vesicular transport in eukaryotic cells. Like other GTPases, the Arfs require guanine nucleotide exchange factors to facilitate GTP loading and GTPase-activating proteins (GAPs) to promote GTP hydrolysis. Whereas there are only six mammalian Arfs, the human genome encodes over 20 proteins containing Arf GAP domains. A subset of these, referred to as AZAPs (Randazzo PA, Hirsch DS. Cell Signal 16: 401-413, 2004), are characterized by the presence of at least one NH(2)-terminal pleckstrin homology domain and two or more ankyrin repeats following the GAP domain. The substrate specificities of these proteins have been previously characterized by using in vitro assay systems. However, a limitation of such assays is that they may not accurately represent intracellular conditions, including posttranslational modifications, or subcellular compartmentalization. Here we present a systematic analysis of the GAP activity of seven AZAPs in vivo, using an assay for measurement of cellular Arf-GTP (Santy LC, Casanova JE. J Cell Biol 154: 599-610, 2001). In agreement with previous in vitro results, we found that ACAP1 and ACAP2 have robust, constitutive Arf6 GAP activity in vivo, with little activity toward Arf1. In contrast, although ARAP1 was initially reported to be an Arf1 GAP, we found that it acts primarily on Arf6 in vivo. Moreover, this activity appears to be regulated through a mechanism involving the NH(2)-terminal sterile-alpha motif. AGAP1 is unique among the AZAPs in its specificity for Arf1, and this activity is dependent on its NH(2)-terminal GTPase-like domain. Finally, we found that expression of AGAP1 induces a surprising reciprocal activation of Arf6, which suggests that regulatory cross talk exists among Arf isoforms.  相似文献   

14.
The binding of the coat protein complex, coatomer, to the Golgi is mediated by the small GTPase ADP-ribosylation factor-1 (ARF1), whereas the dissociation of coatomer, requires GTP hydrolysis on ARF1, which depends on a GTPase-activating protein (GAP). Recent studies demonstrate that when GAP activity is assayed in a membrane-free environment by employing an amino-terminal truncation mutant of ARF1 (Delta17-ARF1) and a catalytic fragment of the ARF GTPase-activating protein GAP1, GTP hydrolysis is strongly stimulated by coatomer (Goldberg, J., (1999) Cell 96, 893-902). In this study, we investigated the role of coatomer in GTP hydrolysis on ARF1 both in solution and in a phospholipid environment. When GTP hydrolysis was assayed in solution using Delta17-ARF1, coatomer stimulated hydrolysis in the presence of the full-length GAP1 as well as with a Saccharomyces cerevisiae ARF GAP (Gcs1) but had no effect on hydrolysis in the presence of the phosphoinositide dependent GAP, ASAP1. Using wild-type myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles, GAP1 by itself stimulated GTP hydrolysis efficiently, and coatomer had no additional effect. Disruption of the phospholipid vesicles with detergent resulted in reduced GAP1 activity that was stimulated by coatomer, a pattern that resembled Delta17-ARF1 activity. Our findings suggest that in the biological membrane, the proximity between ARF1 and its GAP, which results from mutual binding to membrane phospholipids, may be sufficient for stimulation of ARF1 GTPase activity.  相似文献   

15.
The distinct levels of Rac activity differentially regulate the pattern of intrinsic cell migration. However, it remains unknown how Rac activity is modulated and how the level of Rac activity controls cell migratory behavior. Here we show that Slit-Robo GAP 1 (srGAP1) is a modulator of Rac activity in locomotive cells. srGAP1 possesses a GAP activity specific to Rac1 and is recruited to lamellipodia in a Rac1-dependent manner. srGAP1 limits Rac1 activity and allows concomitant activation of Rac1 and RhoA, which are mutually inhibitory. When both GTPases are activated, the protrusive structures caused by Rac1-dependent actin reorganization are spatially restricted and periodically destabilized, causing ruffling by RhoA-induced actomyosin contractility. Depletion of srGAP1 overactivates Rac1 and inactivates RhoA, resulting in continuous spatiotemporal spreading of lamellipodia and a modal shift of intrinsic cell motility from random to directionally persistent. Thus srGAP1 is a key determinant of lamellipodial dynamics and cell migratory behavior.  相似文献   

16.
During cancer development, coordinated changes in cell motility and cell cycle progression are required for the gradual transformation of normal cells into cancer cells. Previous studies have shown that ARF6 is a critical regulator of epithelial cell integrity and motility via its role in membrane movement and actin-based cytoskeletal remodeling. Recently, we have found that ARF6 also plays a role during cell division. It localizes to the cleavage furrow and midbody of cells during mitosis, and its activity is regulated during cytokinesis. Here, we investigate the requirement for ARF6 during mitosis and find that depletion of ARF6 using RNA interference disrupts the completion of cytokinesis. This finding demonstrates that ARF6 is essential during the final stages of cytokinesis. In addition, we have identified Ku70, a DNA-binding protein that is required for DNA damage repair, as a new ARF6-interacting protein and found that it is part of a complex with ARF6, especially during mitosis. These results clarify the importance of ARF6 activity during cytokinesis and begin to reveal other molecules that may contribute to the function of ARF6.  相似文献   

17.
ARF GAP1, a 415-amino acid GTPase activating protein (GAP) for ADP-ribosylation factor (ARF) contains an amino-terminal 115-amino acid catalytic domain and no other recognizable features. Amino acids 203-334 of ARF GAP1 were sufficient to target a GFP-fusion protein to Golgi membranes in vivo. When overexpressed in COS-1 cells, this protein domain inhibited protein transport between the ER and Golgi and, in vitro, competed with the full-length ARF GAP1 for binding to membranes. Membrane binding by ARF GAP1 in vitro was increased by a factor in cytosol and this increase was inhibited by IC261, an inhibitor selective for casein kinase Idelta (CKIdelta), or when cytosol was treated with antibody to CKIdelta. The noncatalytic domain of ARF GAP1 was phosphorylated both in vivo and in vitro by CKI. IC261 blocked membrane binding by ARF GAP1 in vivo and inhibited protein transport in the early secretory pathway. Overexpression of a catalytically inactive CKIdelta also inhibited the binding of ARF GAP1 to membranes and interfered with protein transport. Thus, a CKI isoform is required for protein traffic through the early secretory pathway and can modulate the amount of ARF GAP1 that can bind to membranes.  相似文献   

18.
Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs.  相似文献   

19.
Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane. We show here that GIT1, a GTPase-activating protein stimulating GTP hydrolysis on ARF6, is the second molecular partner that turns over the GDP/GTP cycle of ARF6 during cell stimulation. Western blot and immunofluorescence experiments indicated that GIT1 is cytosolic in resting cells but is recruited to the plasma membrane in stimulated cells, where it co-localizes with ARF6 at the granule docking sites. Over-expression of wild-type GIT1 inhibits growth hormone secretion from PC12 cells; this inhibitory effect was not observed in cells expressing a GIT1 mutant impaired in its ARF-GTPase-activating protein (GAP) activity or in cells expressing other ARF6-GAPs. Conversely reduction of GIT1 by RNA interference increased the exocytotic activity. Using a real time assay for individual chromaffin cells, we found that microinjection of GIT1 strongly reduced the number of exocytotic events. These results provide the first evidence that GIT1 plays a function in calcium-regulated exocytosis in neuroendocrine cells. We propose that GIT1 represents part of the pathway that inactivates ARF6-dependent reactions and thereby negatively regulates and/or terminates exocytotic release.  相似文献   

20.
The binding of extracellular matrix proteins to integrins triggers rearrangements in the actin cytoskeleton by regulating the Rho family of small GTPases. The signaling events that mediate changes in the activity of Rho proteins in response to the extracellular matrix remain largely unknown. We have demonstrated in previous studies that integrin signaling transiently suppresses RhoA activity through stimulation of p190RhoGAP. Here, we investigated the biological significance of adhesion-dependent RhoA inactivation by manipulating p190RhoGAP signaling in Rat1 fibroblasts. The inhibition of RhoA activity that is induced transiently by adhesion was antagonized by expression of dominant negative p190RhoGAP. This resulted in impaired cell spreading on a fibronectin substrate, reduced cell protrusion, and premature assembly of stress fibers. Conversely, overexpression of p190RhoGAP augmented cell spreading. Dominant negative p190RhoGAP elevated RhoA activity in cells on fibronectin and inhibited migration, whereas overexpression of the wild-type GAP decreased RhoA activity, promoted the formation of membrane protrusions, and enhanced motility. Cells expressing dominant negative p190RhoGAP, but not control cells or cells overexpressing the wild-type GAP, were unable to establish polarity in the direction of migration. Taken together, these data demonstrate that integrin-triggered RhoA inhibition by p190RhoGAP enhances spreading and migration by regulating cell protrusion and polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号