首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We studied the morphology, molecular genetics, and hebivory of two species of willows (Salix sericea and S. eriocephala) and their interspecific hybrids to test four alternative hypotheses concerning the effects of hybridization on plant resistance. Individually marked plants were identified using morphological traits in the field and measurements of stipule and leaf pubescence were made and compared using Canonical Discriminant Function Analysis. DNA was extracted from the leaves of a sample of the marked plants and RAPD-PCR analysis was performed to establish the genetic status of parental and hybrid plants. RAPD band analysis generally verified the genetic status of parental plants. Hybrid plants were usually correctly identified in the field with a few exceptions. However, the hybrid plants were a heterogeneous group of plants made up of most plants that appear to be F1s and a few plants that appear to be backcrosses to S. sericea. Morphological variables were useful for distinguishing S. sericea from S. eriocephala and hybrids, but were not as dependable in distinguishing between S. eriocephala and hybrids. We compared the densities of 11 herbivore species and the infection by a leaf rust pathogen (Melampsora sp.) on the leaves and stems of two parents and the hybrids in the field. We found support for the Additive hypothesis (3 species), the Dominance hypothesis (2 species) and the Hybrid Susceptibility hypothesis (7 species, 6 herbivores and the Melampsora rust). We found no evidence for the Hybrid Resistance hypothesis. Guild membership was not a good predictor of similar responses of species to hybrid versus parental plants. A Canonical Discriminant Function Analysis showed discrete separation of the taxa based on herbivore densities, illustrating different community structures on hybrid and parental plants. This study demonstrates the diversity of responses of phytophages in response to interspecific hybridization.  相似文献   

3.
Direct and indirect effects of plant genetic variation on enemy impact   总被引:4,自引:0,他引:4  
Abstract.
  • 1 The Tritrophic and Enemy Impact concepts predict that natural enemy impact varies: (a) among plant genotypes and (b) may depend on the abundance of heterospecific herbivores, respectively. I tested these predictions using three herbivore species on potted, cloned genotypes of Salik sericea Marshall in a common garden experiment.
  • 2 Densities of the leaf miner (Phyllonorycter salicifoliella (Chambers)) and two leaf galling sawflies (Phyllocolpa nigrita (Marlatt) and Phyllocolpa eleanorae Smith and Fritz) varied significantly among willow clones, indicating genetic variation in resistance.
  • 3 Survival and natural enemy impact caused by egg and larval parasitoids and/or unknown predators differed significantly among willow clones for each of the three herbivore species, indicating genetic variation in survival and enemy impact.
  • 4 Survival of Phyllonorycter was negatively density-dependent among clones.
  • 5 Survival of Phyllonorycter and Phyllocolpa eleanorae were positively correlated with densities of heterospecific herbivores among clones and parasitism of these species were negatively correlated with densities of the same heterospecific herbivores among clones.
  • 6 At least for Phyllonorycter this positive correlation may suggest either facilitation of survival between herbivore species, which do not share natural enemies, or an apparent interaction caused by host plant genetic variation.
  • 7 Among clones, egg parasitism of Phyllocolpa eleanorae was weakly positively correlated with density of Phyllocolpa nigrita. Since these species share the same Trichogramma egg parasitoid, this interaction could support the hypothesis of apparent competition.
  相似文献   

4.
We studied herbivory of two species of willows (Salix sericea and S. eriocephala) and their interspecific hybrids to test alternative hypotheses concerning the effects of hybridization on plant resistance. Individually marked plants were identified using morphological traits in the field and random amplified polymorphic DNA (RAPD) band analysis was used to verify the genetic status of many parental and hybrid plants. The desities of 12 herbivore species on plants in the field were compared between two parents and their F2-type hybrids. We found about equal support for the additive, dominance, and hybrid susceptibility hypotheses over 4 years. In one year, one species supported the hybrid resistance hypothesis. Guild membership was not a good predictor of similar responses of species to hybrid versus parental plants. There were marked differences in support for particular hypotheses among years for four herbivore species. This study demonstrates the diversity of responses of phytophages in response to interspecific hybridization, and indicates that year-to-year variation in relative resistance of hybrid plants can be important.  相似文献   

5.
We evaluated feeding preference and damage by the slug, Arion subfuscus, on seedlings of two willow species, Salix sericea and S. eriocephala, and their F1 interspecific hybrids. Trays of seedlings were placed in the field and excised leaves were presented to slugs in choice tests. Slugs preferred feeding on and caused the most damage to S. eriocephala seedlings. S. sericea seedlings were least preferred and least damaged. F1 hybrid seedlings were intermediate in preference and damage. Slug preference of and damage to these seedlings decreased over time, suggesting developmental changes in resistance. Seedlings were sampled for phenolic glycoside and tannin chemistry weekly to coincide with the field and laboratory experiments. Concentrations of phenolic glycosides and tannins increased linearly with seedling age, coincident with changes in slug preference and damage, indicating a developmental change in defense. Slug deterrence was not detected at low concentrations of salicortin when painted on leaves or discs, but both salicortin and condensed tannins deterred slug feeding at concentrations between 50 and 100 mg/g, levels found in adult willows. Seedling performance was related to damage inflicted by slugs. Due to lower levels of damage when exposed to slugs in the field, S. sericea plants had significantly greater biomass than S. eriocephala plants. Biomass of F1 hybrids was equal to S. sericea when damaged. However, undamaged S. eriocephala and F1 hybrid plants had the greatest biomass. Because F1 hybrid seedlings performed as well as the most fit parent in all cases, slugs could be an important selective factor favoring introgression of defensive traits between these willow species.  相似文献   

6.
《Fungal biology》2014,118(11):910-923
Melampsora willow rusts are the most important fungal pathogens in short rotation coppices of biomass willows. In the past, breeding programmes for rust resistant biomass willows concentrated on the distinction of races within the forma specialis Melampsora larici-epitea f. sp. larici-epitea typica that colonized Salix viminalis and related clones. In a new breeding program that is based on a wider range of willow species it is necessary to identify further Melampsora species and formae specialis that are pathogens of willow species other than S. viminalis. Therefore, three stock collections with Salix daphnoides, Salix purpurea, and other shrub willow species (including S. viminalis) species were sampled in north-eastern Germany. A fourth stock collection in central Germany contributed rusts of tree willows (Salix fragilis and Salix alba) and the large shrub Salix caprea. Out of 156 rust samples, 149 were successfully sequenced for ITS rDNA. A phylogenetic analysis combining Neighbour-Joining, Maximum-Likelihood and Bayesian analysis revealed six species: Melampsora ribesii-purpureae, Melampsora allii-salicis-albae, Melampsora sp. aff. allii-fragilis, Melampsora larici-pentandrae, Melampsora larici-caprearum, and Melampsora larici-epitea. The first four species were found exclusively on the expected hosts. Melampsora larici-caprearum had a wider host range comprising S. caprea and S. viminalis hybrids. Melampsora larici-epitea can be further differentiated into two formae speciales. The forma specialis larici-epitea typica (59 samples) colonized Salix viminalis clones, Salix purpurea, Salix×dasyclados, and Salix×aquatica. In contrast to this relatively broad host range, f. sp. larici-daphnoides (65 samples) was found exclusively on Salix daphnoides. With the distinction and identification of the rust species/formae speciales it is now possible to test for race-specific resistances in a more targeted manner within the determined pairings of rust and willow species.  相似文献   

7.
Fast-growing willows are cultivated as coppice in short rotation biomass plantations. The production and sustainability of the system is based on the ability of trees to resprout after repeated harvesting. The large variation in coppicing ability is due to plant genotypic differences in structure and physiology as well as environmental factors. Morphological and structural prerequisites for resprouting were compared in two shrubby willows with high coppicing ability, S. viminalis and S. eriocephala, and one tree-formed species, S. amygdaloides, with low coppicing ability. The initiation and development of buds and the resprouting pattern of coppiced stools were compared. All buds were axillary in origin and showed the same principal structure consisting of one main shoot primordium and two lateral primordia. In S. viminalis and S. eriocephala the lateral buds contained several leaf primordia and sprouted shortly after the main bud. In S. amygdaloides further development of lateral buds was inhibited after formation of two budscales, and leaf primordia were not formed until the buds were forced to sprout. The number of sprouts developing after coppicing were correlated to the structure and number of buds and their position on the stools. Self-thinning rate was high and many shoots originating from lateral buds died. Most buds were located above ground on the remaining basal portions of harvested stems. No adventitious buds were found on the stools. Significantly different bud differentiation pattern and frequent sylleptic sprouting resulted in lower coppice response in S. amygdaloides compared to S. viminalis and S. eriocephala.  相似文献   

8.
Levels of damage by mixed natural infestations of the leaf-feeding chrysomelid beetles, Phyllodecta vulgatissima (L.) (the blue willow beetle) and Galerucella lineola (Fab.) (the brown willow beetle), were determined in replicated field plots of 24 Salix clones at Long Ashton (Bristol, UK) during 1993–94. Over the same period, the host plant preferences of both chrysomelids were investigated in a standard multiple-choice laboratory procedure, where beetles were enclosed in Petri dishes with leaf discs cut from young pot-grown trees propagated from shoot cuttings taken from 20 of the 24 willow clones represented in the field study. The laboratory experiments indicated that P. vulgatissima and G. lineola had similar host plant preferences in the range of willows examined (r >0.85). In both field and laboratory, the least preferred Salix clones and hybrids were those of 5. eriocephala, followed by S. purpurea, S. burjatica, S. dasyclados and S. triandra. Clones of S. eriocephala and S. purpurea were frequently rejected altogether in laboratory tests. Most preferred were clones of S. viminalis and several hybrids of S. viminalis, S. aurita, S. caprea and S. cinerea. These results substantiate the reports that P. vulgatissima and G. lineola are deterred from feeding on willows which have relatively high concentrations of phenolic (salicylate) glucosides in the leaves. The least preferred willows, particularly S. eriocephala, S. purpurea and S. burjatica, could be of great potential value in plant breeding for resistance to these willow beetle pests.  相似文献   

9.
Hochwender CG  Fritz RS 《Oecologia》2004,138(4):547-557
To determine the influence of plant genetic variation on community structure of insect herbivores, we examined the abundances of 14 herbivore species among six genetic classes of willow: Salix eriocephala, S. sericea, their F1 and F2 interspecific hybrids, and backcross hybrids to each parental species. We placed 1-year-old plants, grown from seeds generated from controlled crosses, in a common garden. During the growing season, we censused gall-inducing flies and sawflies, leaf-mining insects, and leaf-folding Lepidoptera to determine the community structure of herbivorous insects on the six genetic classes. Our results provided convincing evidence that the community structure of insect herbivores in this hybrid willow system was shaped by genetic differences among the parental species and the hybrid genetic classes. Using MANOVA, we detected significant differences among genetic classes for both absolute and relative abundance of herbivores. Using canonical discriminant analysis, we found that centroid locations describing community structure of the insect herbivores differed for each genetic class. Moreover, the centroids for the four hybrid classes were located well outside of the range between the centroids for the parental species, suggesting that more than additive genetic effects of the two parental species influenced community formation on hybrid classes. Line-cross analysis suggested that plant genetic factors responsible for structuring the herbivore community involved epistatic effects, as well as additive and dominance effects. We discuss the ramifications of these results in regard to the structure of insect herbivore communities on plants and the implications of our findings for the evolution of interspecific interactions.  相似文献   

10.
Joakim Hjältén 《Oecologia》1998,117(1-2):127-132
The aim of this study was to assess the responses of herbivores and pathogens to hybrid plants under controlled conditions. F1 hybrids and parental species, produced by hand-pollinating willows in the field, were potted and kept in an experimental field under controlled conditions. In 1997, plant growth and survival were measured along with densities of insects and the degree of pathogen infection on the willows. The survival rate was higher for S. repens than for the hybrids and lowest for S. caprea. Densities of the sawflies Pontania pedunculi and P. brigmanii and the leaf-galling midge Iteomyia capreae were higher on hybrids and on S. caprea than on S. repens. The densities of Crepidodera fulvicornis (Chrysomelidae), chrysomelid larvae and the bud-galling midge Dasineura rosaria did not differ between any of the plant categories. Hybrids were more severely infected by rust (Melampsora sp.) than S. caprea and the totally resistant S. repens. Densities of herbivores on hybrid willows were consistent with the dominance hypothesis (i.e. herbivore densities were similar to densities on one of the parental species) or supported the no-difference hypothesis. Furthermore, herbivore densities on hybrid plants were most similar to densities on the more susceptible parent. The breakdown in rust resistance in hybrid plants suggests that resistance traits are severely disrupted by the genetic re-arrangement in hybrids and that this increased susceptibility could select against hybridisation. Received: 17 February 1998 / Accepted: 15 June 1998  相似文献   

11.
This paper provides an overview of the leaf-mining insect community feeding on willows (Salix spp.) and poplars (Populus spp.) in Siberia. According to published data and our own observations, 50 leaf-mining insect species (i.e., 24 species of Lepidoptera, 15 Coleoptera, 6 Diptera, and 5 Hymenoptera) feed on those two plant genera in Siberia. Using an integrative approach combining field work, morphological and DNA barcoding analyses, we identified 32 leaf-mining insect species from 14 regions across Siberia (i.e. 64% of all leaf-mining species known on Salicaceae in this part of Russia). Among them, 26 species most often found in parks and botanical gardens, represented new faunistic records for several poorly explored regions of Siberia. We have more than doubled the list of Salicaceae-feeding leaf-mining insects in Tomsk oblast, Altai krai, and the Republic of Tuva, and for the first time provided data on leaf-miners for the Khanty–Mansi Autonomous Okrug. The micromoth Phyllocnistis gracilistylella (Gracillariidae), recently described from Japan, was found on a new host plant (Salix caprea) in the south of Krasnoyarsk krai, is new for Russia. Eight leafmining insect species (i.e., five gracillariids: Phyllocnistis labyrinthella, Ph. unipunctella, Phyllonorycter apparella, Ph. sagitella, and Ph. populifoliella; two beetles: Zeugophora scutellaris and Isochnus sequensi; and one sawfly: Heterarthrus ochropoda) can outbreak on poplars, most often in urban plantations, botanical gardens, and plant nurseries in Siberia, and can also affect natural stands. Forty-five species of 50 leaf-mining insects known to feed on willow and poplar in Siberia also occur in Central and Eastern Europe. The remaining five species (Phyllocnistis gracilistylella, Phyllonorycter sibirica, Heterarthrus fasciatus, Tachyerges dauricus, and Isochnus arcticus) are recorded in Asia only. Species richness of the family Gracillariidae, the most diverse on Salicaceae in Siberia, displays 80% similarity to that in the European part of Russia and 71% to the Russian Far East. We discuss the faunal similarity of these regions and highlight the importance of applying an integrative approach combining ecological, morphological analyses, and DNA barcoding to explore and characterize the insect fauna of poorly studied regions of Asian part of Russia.  相似文献   

12.
Summary

Some promising biomass clones traded in Great Britain as Salix x smithiana Willd. (S. viminalis x S. cinerea) are in fact S. x sericans Tausch ex Kern. (S. viminalis x S. caprea) but the major problem discussed is that two distinct willows are masquerading under the same name, S. dasyclados. To avoid confusion it is suggested that S. x dasyclados Wimmer is retained for the hybrid (2n = 57), a female clone and formerly a notable Dutch and English basket willow, whereas for S. dasyclados Skvortsov non Wimmer, a species ranging from the Baltic to Siberia with 2n = 76, the name S. burjatica Nasarov, as suggested by Chmelar, is preferred. The willows distributed and designated Salix aquatica Gigantea by the Danish willows specialist Jensen, which formed the basis of many early biomass trials, are regarded at present as selections of, or very similar to, S. burjatica Nasarov (S. dasyclados sensu Skvortsov non Wimmer). In addition to a higher level of ploidy, they are visually distinguishable from S. x dasyclados Wimm. by their wider and longer leaves, persistent stipules and the existence of male forms.  相似文献   

13.
Abstract 1 Planting of species mixtures is a strategy for the non‐chemical management of willow beetles in short‐rotation coppice willows. However, the relatively susceptible Salix viminalis genotypes and their hybrids dominate current high‐yielding willows. Interactions between Phratora vulgatissima and different genotypes of S. viminalis were examined under laboratory conditions to determine if these genotypes exhibit genetic differences in susceptibility to willow beetle damage. 2 Seven S. viminalis genotypes and four hybrids were tested for the feeding preference of adult P. vulgatissima, larval performance and within‐season plant response to manual defoliation (50% and 75%). 3 The feeding preference of adult beetles, the growth rate of larvae, and the weight at 33 days of larvae and pupae differed significantly between genotypes. Genotypes also differed significantly in their height and weight responses to mechanical defoliation. Two genotypes were taller, with longer internodes, after defoliation than were undamaged plants. Two hybrids and their S. viminalis parent showed no significant reduction in final dry weight between 0% and 50% defoliation treatments. 4 Susceptibility of genotypes to adult feeding was not correlated with their tolerance to defoliation in terms of weight or height responses; however, larval growth rate on genotypes was negatively correlated both with final height and number of leaves after 75% defoliation and with the susceptibility of genotype to adult feeding. 5 Salix viminalis showed genetic differences for all parameters tested. This suggests that the planting of a mixture of these genotypes would contain genetic differences with respect to host susceptibility to P. vulgatissima. Some parameters showed similarities between a hybrid and its parent, whereas others showed differences between siblings. This offers potential for effective breeding of desirable traits.  相似文献   

14.
Wide variation and overlap in morphological characters have led to confusion in species identification within the fungal rust genus Melampsora. The Melampsora species with uredinial–telial stages on white poplar and aspens are especially prone to misidentification. This group includes the Melampsora populnea species complex and the highly destructive pine twisting rust, Melampsora pinitorqua, which alternates between hosts in Populus section Populus and Pinus. Our objective was to compare morphologically based identification to genetic material extracted from Melampsora species pathogenic to aspen and white poplar. We compared morphometric traits and DNA barcodes obtained from internal transcribed spacer (ITS), large ribosomal RNA subunit (28S), and mitochondrial cytochrome oxidase 1 (CO1) sequences to delimit within this taxonomically difficult group. Eight different Melampsora species were initially defined based on host specificity and morphometric data. DNA barcodes were then overlaid on these initial species definitions. The DNA barcodes, specifically those defined on ITS and 28S sequences, provided a highly accurate means of identifying and resolving Melampsora taxa. We highlighted species misidentification in specimens from Canadian herbaria related to either Melampsora medusae f. sp. tremuloidae or Melampsora aecidioides. Finally, we evidenced that the north-American species found on Populus alba, M. aecidioides is closely related but distinct from the four species of the M. populnea complex (Melampsora larici-tremulae, Melampsora magnusiana, Melampsora pinitorqua, and Melampsora rostrupii) found in Eurasia.  相似文献   

15.
In order to enhance phytoremediation efficiency, we investigated the effects of dual inoculation with ectomycorrhizal fungi and the ectomycorrhiza associated bacteria Micrococcus luteus and Sphingomonas sp. on the growth and metal accumulation of willows (Salix viminalis x caprea) on contaminated soil. The bacterial strains were previously collected from sporocarps of ectomycorrhizal fungi. The bacteria increased plant growth and the mycorrhizal dependency of willows colonized with the ectomycorrhizal fungus Hebeloma crustuliniforme. The total cadmium (Cd) and zinc (Zn) accumulation in the shoot biomass was increased after inoculation with the fungal strain Hebeloma crustuliniforme in combination with Micrococcus luteus up to 53% and in combination with Sphingomonas sp. up to 62%, respectively. The dual inoculation in combination with Laccaria laccata did not increase the accumulation of Cd and Zn in the willows. We conclude that associated bacteria can enhance the ectomyorrhiza formation and growth of willows and, thereby, the Cd and Zn accumulation in the plant biomass. The results suggest that bacterial support of root growth promoting ectomycorrhizal fungi may be a promising approach to improve the remediation of metal-contaminated soils by using willows.  相似文献   

16.
Tovar-Sánchez E  Oyama K 《Oecologia》2006,147(4):702-713
In a previous study, we showed that the geographic proximity of hybrid plants to the allopatric areas of parental species increases their morphological and genetic similarity with them. In the present work, we explored whether the endophagous fauna of hybrid plants show the same pattern. We studied the canopy species richness, diversity and composition of leaf-mining moths (Lepidoptera: Tischeridae, Citheraniidae) and gall-forming wasps (Hymenoptera: Cynipidae) associated with two species of red oaks (Quercus crassifolia and Quercus crassipes) and their interspecific hybrid (Quercus×dysophylla Benth pro sp.) in seven hybrid zones in central Mexico, during four seasons in 2 years. The study was conducted on 194 oak trees with known genetic status [identified by leaf morphology and molecular markers (random amplified polymorphic DNAs)], and the results indicate a bidirectional pattern of gene flow. Hybrid plants supported intermediate levels of infestation of gall-forming and leaf-mining insects compared to their putative parental species. The infestation level of leaf-mining insects varied significantly following the pattern: Q. crassifolia>hybrids>Q. crassipes, whereas the gall-forming insects showed an inverse pattern. A negative and significant relationship was found between these two types of insect guilds in each host taxa, when the infestation percentage was evaluated. It was found that 31.5% (n=11) of the endophagous insects were specific to Q. crassipes, 22.9% (n=8) to Q. crassifolia, and 8.6% (n=3) to hybrid individuals. The hybrid bridge hypothesis was supported in the case of 25.7% (n=9) of insects, which suggests that the presence of a hybrid intermediary plant may favor a host herbivore shift from one plant species to another. Greater genetic diversity in a hybrid zone is associated with greater diversity in the endophagous community. The geographic proximity of hybrid plants to the allopatric site of a parental species increases their similarity in terms of endophagous insects and the Eje Neovolcánico acts as a corridor favoring this pattern. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Willow oyster scale, Lepidosaphes salicina Borchsenius (Homoptera: Diaspididae) is a serious, univoltine, pest of willows and poplars in northern China. Its main natural enemy was Hemisarcoptes sp. (Acari: Astigmata: Hemisarcoptidae), which attacks eggs, nymphs, immature males and females of the scale. Mite prevalence was greatest during June, on 2nd-instar female nymphs of the pest. The numerical responses and density dependencies of the mite on L. salicina are discussed in relation to field data. More scales were parasitized on the eastern and northern sides of the trees, which had more scales, than on their souther and western aspects. Another diaspidid, Quadraspidiotus gigas (Thiem and Gerneck), was also attacked on poplars by Hemisarcoptes sp.  相似文献   

18.
We examined interactions between host plants, endophytic fungi, and leaf-mining moths (Phyllonorycter sp.) in an oak (Quercus grisea x Q. gambelii) hybrid zone. The community of endophytic fungi and two common endophyte species examined responded to host plant hybridization. Total fungal frequency (TFF) and frequency of Gnomonia cerastis were lowest on hosts resembling Q. grisea, and increased linearly towards those resembling Q. gambelii. In contrast, Coccochorella quercicola was most frequently isolated from Q. grisea-like hosts and decreased in frequency across hybrids towards Q. gambelii. Frequency of G. cerastis and TFF covaried with Phyllonorycter density across the hybrid zone, but direct effects of endophytes on Phyllonorycter density were not detected. Associations between endophytes and unexplained mortality of Phyllonorycter varied according to endophyte species and state of Phyllonorycter development. In the sap-feeding stage, unexplained mortality was negatively associated with TFF and frequencies of Hormonema sp. and Preussia funiculata; whereas, in the tissue-feeding stage, unexplained Phyllonorycter mortality was positively associated with G. cerastis frequency. Three-way interactions between plant hybridization, endophytic fungi, and the insect herbivore were not significant.  相似文献   

19.
Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up‐regulated with their derived proteins phylogenetically clustered in the TPS‐g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)‐nerolidol, the latter being precursor of the homoterpene (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)‐nerolidol, as well as (E,E)‐geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)‐linalool and DMNT than wild‐type plants, whereas transgenic rice expressing Pltps4 produced (S)‐linalool, DMNT and (E,E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment.  相似文献   

20.
We investigated relationships between endophytic fungi and a leaf-mining moth, Phyllonorycter sp., along an elevational gradient from 2255 to 2895 m. The fungi and moth larvae inhabit leaves of Quercus gambelii. Fungal frequencies and larval densities varied with elevation. However, larval densities were not associated with the frequencies of infection by endophytic fungi. Survival of larvae was positively associated with the most dominant fungus, Gnomonia cerastis, owing to reduced parasitism of moth larvae on trees with high frequencies of Gnomonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号