首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants of Streptococcus lactis that produce lactic acid slowly in milk were isolated by inducing plasmid loss in the wild type at 39 to 40 C. Such strains had lost most of their surface-bound proteinase activity and were designated prt(-). The specific proteinase activities of S. lactis C10 prt(+) whole cells and solubilized cell walls were 7 and 18 times, respectively, those of the prt(-) strain, but spheroplast lysates of prt(+) and prt(-) strains contained similar proteinase activity. S. lactis H1 showed a similar relative distribution of activity between prt(+) and prt(-) cellular fractions, although the overall level was lower. The limited growth in milk, characteristic of prt(-) strains, can be explained in terms of their low surface-bound proteinase activity.  相似文献   

2.
The use of Streptococcus diacetylactis as a flavor producer in dairy fermentations is dependent upon its ability to produce diacetyl from citrate. Treatment of S. diacetylactis strains 18-16 and DRC1 with acridine orange resulted in the conversion of approximately 2% of the DRC1 population and 20% of the 18-16 population to citrate negative, which is indicative of the involvement of plasmid deoxyribonucleic acid (DNA). Growth in the presence of acridine orange also resulted in the appearance of 2% lactose-negative derivatives in S. diacetylactis 18-16 and 99% lactose-defective, proteinase-negative derivatives in S. diacetylactis DRC1. Cesium chloride-ethidium bromide equilibrium density gradients of cleared lysate material from each strain revealed the presence of covalently closed circular DNA. Samples of this covalently closed circular DNA were subjected to agarose gel electrophoresis to determine the plasmid composition of each strain. S. diacetylactis 18-16 was found to possess six plasmids, of approximately 41, 28, 6.4, 5.5, 3.4, and 3.0 megadaltons (Mdal). S. diacetylactis DRC1 contained six plasmids, of approximately 41, 31, 18, 5.5, 4.5, and 3.7 Mdal. Variants of S. diacetylactis 18-16 which failed to produce acetoin plus diacetyl from citrate (citrate negative) were missing a 5.5-Mdal plasmid. Lactose-negative mutants of the same strain were devoid of a 41-Mdal plasmid. Lactose-defective, proteinase-negative mutants of S. diacetylactis DRC1 were missing a 31-Mdal plasmid. The citrate-negative mutants of S. diacetylactis DRC1 isolated in this study did not possess a 5.5-Mdal plasmid. Thus, we have evidence that there is a correlation between the ability to utilize citrate and the presence of a 5.5-Mdal plasmid. A relationship was also noted between lactose fermentation and proteinase activity and plasmid DNA in S. diacetylactis.  相似文献   

3.
Transformation of Streptococcus lactis Protoplasts by Plasmid DNA   总被引:3,自引:16,他引:3       下载免费PDF全文
Polyethylene glycol-treated protoplasts prepared from Streptococcus lactis LM3302, a lactose-negative (Lac) derivative of S. lactis ML3, were transformed to lactose-fermenting ability by a transductionally shortened plasmid (pLM2103) coding for lactose utilization.  相似文献   

4.
Stabilization of Lactose Metabolism in Streptococcus lactis C2   总被引:7,自引:9,他引:7       下载免费PDF全文
The integration of the lactose plasmid from lactic streptococci into the host chromosome could stabilize this trait for dairy fermentations. Sixty lactose-positive (Lac+) transductants of lactose- and proteinase-negative (Lac Prt) LM0220 were induced for temperature phage by UV irradiation or mitomycin C. Four of the transductants, designated KB18, KB21, KB54, and KB58, yielded lysates demonstrating less than one Lac+ transductant per 0.2 ml of phage lysate. Successive transferring in the presence of acriflavine did not yield Lac segregants from KB18, KB21, KB54, or KB58, whereas Streptococcus lactis C2 (parent culture) and three other Lac+ transductants showed 12 to 88% conversion from Lac+ to Lac within 6 to 10 repetitive transfers. When grown in continuous culture, KB21 did not show any Lac variants in 168 h, while S. lactis C2 had 96% conversion from Lac+ to Lac in 144 h. Agarose gel electrophoresis of plasmid DNA isolated from KB18, KB21, KB54, and KB58 revealed that the lactose plasmid, pLM2103, normally present in Lac+ transductants, was missing. This suggested integration of the transferred lactose plasmid into the chromosome. In contrast to phage lysates induced from S. lactis C2, which exhibited an exponential decrease in the number of Lac+ transductants after exposure to small doses of UV irradiation, the transduction frequency for lactose metabolism was stimulated by UV irradiation of lysates from KB58. The latter indicated chromosomal linkage for lac and that integration of the lactose genes plasmid into the chromosome had occurred.  相似文献   

5.
Transduction of Lactose Metabolism in Streptococcus lactis C2   总被引:22,自引:4,他引:22       下载免费PDF全文
Ultraviolet (UV)-induced phage lysates, from lactose-positive (lac(+)) Streptococcus lactis C2, transduced lactose fermenting ability to lac(-) recipient cells of this organism. Although the phage titer could not be determined due to the absence of an appropriate indicator strain, the number of transductants was proportional to the amount of phage lysate added. Treatment of the lysate with deoxyribonuclease had no effect on this conversion, indicating the observed genetic change was not mediated by free deoxyribonucleic acid. When the lac(+) transductants were isolated and exposed to UV irradiation, lysates with higher transducing ability were obtained. The transducing ability of this lysate was about 100-fold higher than that observed in the original lysates. The lac(+) transductants were unstable since lac(-) segregants occurred at high frequency. The phage lysate from S. lactis C2 also transduced maltose and mannose metabolism to the respective negative recipient cells. The results demonstrate the transduction of carbohydrate markers by a streptococcal phage and establish a genetic transfer system in group N streptococci.  相似文献   

6.
A phage-insensitive strain of Streptococcus lactis, designated ME2, was used as a prototype strain for the study of mechanisms and genetics of phage resistance in the lactic streptococci. Mutants sensitive to a Streptococcus cremoris phage, ϕ18, were isolated at a level of 17% from cultures of ME2 after sequential transfer at 30°C. Phage-sensitive mutants of ME2 were not fully permissive to ϕ18. The efficiency of plating of ϕ18 on the mutants was 5 × 10−7 as compared with <10−9 for ϕ18 on ME2. Further characterization of the mutants showed that they efficiently adsorbed ϕ18 at levels of >99.8%, whereas ME2 adsorbed only 20 to 40% of ϕ18. These results suggest that increased phage susceptibility of the mutants may result from the loss of a mechanism that inhibits phage adsorption. Moreover, the high frequency of spontaneous mutation in ME2 indicates the involvement of an unstable genetic determinant in this phage defense mechanism. ME2 was shown to possess 13 plasmids ranging in size from 1.6 to 34 megadaltons. Of 40 mutants examined that had increased efficiencies of plating, all were missing a 30-megadalton plasmid, pME0030. These data suggest that pME0030 codes for a function that prevents phage adsorption. Further phenotypic characterization of the phage-sensitive mutants showed that some mutants were deficient in the ability to ferment lactose (Lac) and hydrolyze milk proteins (Prt). However, the Lac+ and Prt+ phenotype segregated independently of the phage-sensitivity phenotype. One phage-sensitive adsorption mutant, designated N1, was tested for susceptibility to 14 different phages. N1 showed increased capacity to adsorb 4 and to replicate 2 of these 14 phages, thereby indicating a phage resistance mechanism in ME2 that generalizes to phage interactions other than the specific ϕ18-ME2 phage-host interaction. These data provide evidence for a unique plasmid-linked phage defense mechanism in phage-insensitive strains of lactic streptococci.  相似文献   

7.
Streptococcus lactis subsp. diacetylactis strain WM4 transferred lactose-fermenting and bacteriocin-producing (Bac+) abilities to S. lactis LM2301, a lactose-negative, streptomycin-resistant (Lac- Strr), plasmid-cured derivative of S. lactis C2. Three types of transconjugants were obtained: Lac+ Bac+, Lac+ Bac-, and Lac-Bac+.S. diacetylactis WM4 possessed plasmids of 88, 33, 30, 5.5, 4.8, and 3.8 megadaltons (Mdal). In Lac+ Bac+ transconjugants, lactose-fermenting ability was linked to the 33-Mdal plasmid and bacteriocin-producing ability to the 88-Mdal plasmid. Curing the 33-Mdal plasmid from Lac+ Bac+ transconjugants resulted in loss of lactose-fermenting ability but not bacteriocin-producing ability (Lac- Bac+). These strains retained the 88-Mdal plasmid. Curing of both plasmids resulted in a Lac- Bac- phenotype. The Lac+ Bac- transconjugant phenotype was associated with a recombinant plasmid of 55 or 65 Mdal. When these transconjugants were used as donors in subsequent matings, the frequency of Lac transfer was about 2.0 X 10(-2) per recipient plated, whereas when Lac+ Bac+ transconjugants served as donors, the frequency of Lac transfer was about 2.0 X 10(-5) per recipient plated. Also, Lac- Bac+ transconjugants were found to contain the 88-Mdal plasmid. The data indicate that the ability of WM4 to produce bacteriocin is linked to an 88-Mdal conjugative plasmid and that lactose-fermenting ability resides on a 33-Mdal plasmid.  相似文献   

8.
The substrate specificity of an intracellular proteinase from Streptococcus lactis was investigated in an effort to understand the role of the enzyme in the cell. Peptides in which the N-terminal residue was glycine were not hydrolyzed by the enzyme (exceptions were glycyl-alanine, glycyl-aspartic acid, and glycyl-asparagine), but the peptide was hydrolyzed if the N-terminal residue was alanine. The enzyme also showed activity toward peptides containing aspartic acid or asparagine. Hydrolysis of only the peptide bonds of alanyl, aspartyl, or asparaginyl residues was confirmed by the action of the enzyme on oxidized bovine ribonuclease A- and B- chain insulin. The N-terminal residues of the peptide fragments liberated were identified. The enzyme attacked both substrates only at alanyl, aspartyl, and asparaginyl residues, releasing these as free amino acids. In addition to alanine, aspartic acid, and asparagine, certain other amino acids were liberated from ribonuclease A, but these were accounted for by the relation of their position to alanine, aspartic acid, and asparagine residues.  相似文献   

9.
Lactose-fermenting mucoid (Lac+ Muc+) variants of plasmid-free Streptococcus lactis subsp. lactis MG1614 were obtained by protoplast transformation with total plasmid DNA from Muc+S. lactis subsp. cremoris ARH87. By using plasmid DNA from these variants for further transformations followed by novobiocininduced plasmid curing, Lac Muc+ MG1614 strains containing only a single 30-megadalton plasmid could be constructed. This plasmid, designated pVS5, appeared to be associated with the Muc+ phenotype.  相似文献   

10.
Using Streptococcus thermophilus phages, plasmid transduction in Lactococcus lactis was demonstrated. The transduction frequencies were 4 orders of magnitude lower in L. lactis than in S. thermophilus. These results are the first evidence that there is phage-mediated direct transfer of DNA from S. thermophilus to L. lactis. The implications of these results for phage evolution are discussed.  相似文献   

11.
Streptococcus lactis C2 has been used extensively by many laboratories in studies on the metabolism of lactic streptococci. By using ultraviolet irradiation as the inducing agent, this organism was shown to release a small bacteriophage, indicating that it is a lysogenic strain. The induced phage had a head approximately 40 nm in diameter and a tail length and width of about 180 and 6 nm, respectively. A structure resembling a collar was observed. Attempts to isolate a sensitive indicator strain for the virus were unsuccessful.  相似文献   

12.
The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transformation. A 20-min polyethylene glycol treatment of protoplasts in the presence of DNA was necessary for maximal transformation. The number of transformants recovered increased as the protoplast and DNA concentration increased over a range of 3.0 X 10(6) to 3.0 X 10(8) protoplasts and 0.25 to 4.0 micrograms of DNA per assay, respectively. With these parameters, transformation was increased to 5 X 10(3) to 4 X 10(4) transformants per microgram of DNA. Linear and recombinant plasmid DNA transformed, but at frequencies 10- to 100-fold lower than that of covalently closed circular DNA. Transformation of recombinant DNA molecules enabled the cloning of restriction endonuclease fragments coding for lactose metabolism into S. lactis LM0230 with the Streptococcus sanguis cloning vector, pGB301. These results demonstrated that the transformation frequency is sufficient to clone plasmid-coded genes which should prove useful for strain improvement of dairy starter cultures.  相似文献   

13.
Restriction and modification have been demonstrated in Streptococcus cremoris KH cells when infected by Streptococcus lactis C2 phage (designated c2) at an efficiency of plating of 2 × 10−7. The growth of c2 phage through KH cells produces modified progeny phage capable of unrestricted growth on KH cells. The ability of single-colony isolates of S. cremoris KH cultures to restrict and modify c2 phage was found to be variable. From 2 to 6.5% of colonies isolated were partially deficient in restrictive capacity, permitting a greater plaquing ability by c2 phage of 1.8 to 2.9 log cycles. No completely restrictionless mutants were isolated from 1,000 colonies examined. Mutants were shown to be deficient in both restriction and modification capabilities of the same specificity. The frequent occurrence of a genotypic change that resulted in the loss of both restriction and modification capacities indicated the involvement of plasmid deoxyribonucleic acid in genetically determining this specific restriction and modification system. S. cremoris KH was found to harbor 11 plasmid molecules, with molecular weights (×106) estimated to be 50, 41, 24, 18, 10, 7.4, 3.3, 3.0, 2.8, 2.5, and 1.5. Of the 27 mutants examined, 25 were missing the 10-megadalton plasmid. This consistent plasmid difference among the majority of mutants isolated supports the involvement of this plasmid in restriction and modification. Plasmid linkage of restriction and modification systems provides a genetic mechanism for the rapid development of phage-sensitive starter cultures due to the inherent instability of extrachromosomal elements.  相似文献   

14.
Two criteria suggest that most of the proteinase of Streptococcus lactis is localized in the cell wall. (i) Intact cells possess proteinase activity when incubated with a high-molecular-weight substrate. (ii) Most of the cell-bound proteinase activity is released during spheroplast formation under conditions which result in the release of only 1% of the intracellular enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase. The solubilized cell wall, plasma membrane, and cytoplasm fractions contained 84, 0, and 16%, respectively, of the total proteinase activity with casein as substrate. The physiological role of a surface-bound proteinase in this organism is discussed.  相似文献   

15.
Lactose- and proteinase-negative (Lac Prt) mutants of Streptococcus lactis C10, ML3, and M18 were isolated after treatment with ethidium bromide. The Lac Prt mutants of C10 were missing a 40-megadalton plasmid. A 33-megadalton plasmid was absent in the ML3 mutants, and the M18 variants lacked a 45-megadalton plasmid. The results suggest a linkage of these metabolic traits to the respective plasmids. The possible complexity of the interrelationship between lactose metabolism and proteinase activity is presented.  相似文献   

16.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

17.
The parameters affecting polyethylene glycol-induced plasmid transformation of Streptococcus lactis LM0230 protoplasts were examined to increase the transformation frequency. In contrast to spreading protoplasts over the surface of an agar medium, their incorporation into soft agar overlays enhanced regeneration of protoplasts and eliminated variability in transformation frequencies. Polyethylene glycol with a molecular weight of 3,350 at a final concentration of 22.5% yielded optimal transformation. A 20-min polyethylene glycol treatment of protoplasts in the presence of DNA was necessary for maximal transformation. The number of transformants recovered increased as the protoplast and DNA concentration increased over a range of 3.0 X 10(6) to 3.0 X 10(8) protoplasts and 0.25 to 4.0 micrograms of DNA per assay, respectively. With these parameters, transformation was increased to 5 X 10(3) to 4 X 10(4) transformants per microgram of DNA. Linear and recombinant plasmid DNA transformed, but at frequencies 10- to 100-fold lower than that of covalently closed circular DNA. Transformation of recombinant DNA molecules enabled the cloning of restriction endonuclease fragments coding for lactose metabolism into S. lactis LM0230 with the Streptococcus sanguis cloning vector, pGB301. These results demonstrated that the transformation frequency is sufficient to clone plasmid-coded genes which should prove useful for strain improvement of dairy starter cultures.  相似文献   

18.
It has been previously observed that loss of plasmid pGK4101 occurred concomitantly with loss of lactose-fermenting ability in Streptococcus lactis subsp. diacetylactis 18-16. Transfer of this 41-megadalton plasmid to LM0230, a lactosenegative (Lac) strain of S. lactis, required cell-to-cell contact and resulted in a conversion of LM0230 to the Lac+ phenotype. This confirms the linkage of lactose-fermenting ability to the 41-megadalton plasmid in S. lactis subsp. diacetylactis and, in addition, demonstrates transfer by a process resembling conjugation in the group N streptococci.  相似文献   

19.
Lactose- and proteinase-negative (Lac Prt) mutants of Streptococcus lactis C10, ML3, and M18 were isolated after treatment with ethidium bromide. The Lac Prt mutants of C10 were missing a 40-megadalton plasmid. A 33-megadalton plasmid was absent in the ML3 mutants, and the M18 variants lacked a 45-megadalton plasmid. The results suggest a linkage of these metabolic traits to the respective plasmids. The possible complexity of the interrelationship between lactose metabolism and proteinase activity is presented.  相似文献   

20.
Shugart, Lee R. (University of Tennessee, Knoxville), and Raymond W. Beck. Occurrence and distribution of proteinase of Streptococcus faecalis var. liquefaciens. J. Bacteriol. 92:338-341. 1966.-The proteolytic enzyme produced by Streptococcus faecalis var. liquefaciens (ATCC 13398) was shown to be an exoenzyme. The production of the proteinase was followed in growing cultures, and its distribution was compared with that of the intracellular enzymes reduced nicotinamide adenine dinucleotide (NADH(2)) peroxidase and lactate dehydrogenase. The proteinase appeared in the culture medium prior to the stationary phase of growth, whereas the other enzymes could be found only in whole cells. Fractionation of whole cells by sonic treatment and by treatment with lysozyme showed the proteinase to be associated primarily with the cell wall and cell membrane, and NADH(2) peroxidase to be associated only with the cytoplasmic fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号