首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work has shown that, as amoebae of the cellular slime mold Polysphondylium pallidum become aggregation competent, they accumulate on their cell surface a carbohydrate-binding protein (lectin) named pallidin. These amoebae also possess cell surface receptors, presumed to contain complex oligosaccharides with a high affinity for the endogenous lectin. If lectin-receptor interactions mediate cell-cell contact, then appropriate concentrations of pallidin inhibitors should block cell cohesion. Two potent macromolecular antagonists of the lectin were employed: the desialylated form of the glycoprotein fetuin and the univalent antibody (Fab) prepared against pallidin. We studied the effects of these inhibitors on rotation-mediated aggregation of P. pallidum amoebae under a variety of assay conditions. Amoebae exposed to hypertonic conditions or to antimetabolites (“Permissive conditions”) were selectively blocked from associating by microgram quantities of the lectin inhibitors, whereas cells in isotonic buffer (“nonpermissive condition”) were only slightly affected. A comparison of the morphology of agglutinates formed under the various conditions allows several explanations for the different susceptibilities to inhibition by antipallidin reagents. Although not conclusive, the work supports a model of cell adhesion in this simple eukaryotic system based at least in part on specific interactions between carbohydrate-binding proteins and receptors on adjoining cells.  相似文献   

2.
Evidence is reviewed implicating a cell surface carbohydrate-bindingprotein (lectin) named pallidin as the mediator of intercellularadhesion in the cellular slime mold Polysphondylium pallidum.Three isolectin forms of pallidin have now been purified andcharacterized. Both lectin and receptor to which lectin canbind are present on the cell surface of adhesive amoebae. Sincepallidin antagonists such as specific sugars, asialofetuin,or specific univalent antibody interfere with intercellularadhesion, cell-cell binding may be based on complementary interactionsbetween pallidin and specific receptors on adjoining cells.  相似文献   

3.
Abstract

The receptor protein tyrosine phosphatase T PTPρ is the most frequently mutated tyrosine phosphatase in human cancer. PTPρ mediates homophilic cell-cell aggregation. In its extracellular region, PTPρ has cell adhesion molecule–like motifs, including a MAM domain, an immunoglobulin domain, and four fibronectin type III (FNIII) repeats. Tumor-derived mutations have been identified in all of these extracellular domains. Previously, the authors determined that tumor-derived mutations in the MAM and immunoglobulin domains of PTPρ reduce homophilic cell-cell aggregation. In this paper, the authors describe experiments in which the contribution of the FNIII repeats to PTPρ-mediated cell-cell adhesion was evaluated. The results demonstrate that deletion of the FNIII repeats of PTPρ result in defective cell-cell aggregation. Furthermore, all of the tumor-derived mutations in the FNIII repeats of PTPρ also disrupt cell-cell aggregation. These results further support the hypothesis that mutational inactivation of PTPρ may lead to cancer progression by disrupting cell-cell adhesion.  相似文献   

4.
We have identified the liver-regulating protein (LRP), a cell surface protein involved in the maintenance of hepatocyte differentiation when cocultured with rat liver epithelial cells (RLEC). LRP was defined by immunoreactivity to a monoclonal antibody (mAb L8) prepared from RLEC. mAb L8 specifically detected two polypeptides of 85 and 73 kD in immunoprecipitation of both hepatocyte- and RLEC-iodinated plasma membranes. The involvement of these polypeptides, which are integral membrane proteins, in cell interaction-mediated regulation of hepatocytes was assessed by evaluating the perturbing effects of the antibody on cocultures with RLEC. Several parameters characteristic of differentiated hepatocytes were studied, such as liver-specific and house-keeping gene expression, cytoskeletal organization and deposition of extracellular matrix (ECM). An early cytoskeletal disturbance was evidenced and a marked alteration of hepatocyte functional capacity was observed in the presence of the antibody, together with a loss of ECM deposition. By contrast, cell-cell aggregation or cell adhesion to various extracellular matrix components were not affected. These findings suggest that LRP is distinct from an extracellular matrix receptor. The fact that early addition of mAb L8 during cell contact establishment was necessary to be effective may indicate that LRP is a novel plasma membrane protein that plays an early pivotal role in the coordinated metabolic changes which lead to the differentiated phenotype of mature hepatocytes.  相似文献   

5.
The social amoeba Dictyostelium discoideum is a simple but powerful model organism for the study of cell-cell adhesion molecules and their role in morphogenesis during development. Three adhesive systems have been characterized and studied in detail. The spatiotemporal expression of these adhesion proteins is stringently regulated, often coinciding with major shifts in the morphological complexity of development. At the onset of development, amoeboid cells express the Ca(2+) -dependent cell-cell adhesion molecule DdCAD-1, which initiates weak homophilic interactions between cells and assists in the recruitment of individuals into cell streams. DdCAD-1 is unique because it is synthesized as a soluble protein in the cytoplasm. It is targeted for presentation on the cell surface by an unconventional protein transport mechanism via the contractile vacuole. Concomitant with the aggregation stage is the expression of the contact sites A glycoprotein csA/gp80 and TgrC1, both of which mediate Ca(2+) /Mg(2+) -independent cell-cell adhesion. Whereas csA/gp80 is a homophilic binding protein, TgrC1 binds to a heterophilic receptor on the cell. During cell aggregation, csA/gp80 associates preferentially with lipid rafts, which facilitate the rapid assembly of adhesion complexes. TgrC1 is synthesized at low levels during aggregation and rapid accumulation occurs initially in the peripheral cells of loose mounds. The extracellular portion of TgrC1 is shed and becomes part of the extracellular matrix. Additionally, analyses of knockout mutants have revealed important biological roles played by these adhesion proteins, including size regulation, cell sorting and cell-type proportioning.  相似文献   

6.
Cadherin-based cell-cell adhesions play important roles in embryonic development and in the maintenance of normal tissue architecture. Little is known, however, about the mechanisms of controlling cadherin dynamics at the cell surface. We previously demonstrated that E-cadherin functions as a cis (lateral)-dimer on the cell surface by chemical cross-linking. In this study, we examined the dynamics of E-cadherin cis-dimer formation during cell-cell adhesion assembly by using chemical cross-linking. Although treatment with cytochalasin D, a potent inhibitor of actin polymerization, was shown to inhibit the formation of cell-cell contacts, the dynamics of E-cadherin cis-dimer formation was not affected. This result indicated that the cis-dimer formation procedure is independent of cell-cell adhesion assembly in vivo. However, the cell aggregation and dissociation assays showed that the cytochalasin D treatment shifted the cadherin-based cell adhesion from a strong to a weak state. Taken together, these results strongly support the possibility that the E-cadherin cis-dimer is a minimal functional unit in cadherin-mediated cell-cell adhesion in vivo.  相似文献   

7.
A carbohydrate-binding protein from Polysphondylium pallidum, a species of cellular slime mold, was purified to homogeneity by adsorption to formalinized erythrocytes and elution with D-galactose. The protein, for which we propose the name PALLIDIN, is assayed by its activity as an agglutinin of erythrocytes. It was previously shown to have different carbohydrate-binding specificities than discoidin, a carbohydrate-binding protein from Dictyostelium discoideum, another species of slime mold. Evidence has been presented previously that each of these proteins is detectable on the cell surface. In the present report we show that the physico-chemical properties of pallidin are different from discoidin. Pallidin has a subunit molecular weight of 24 800 +/- 1100 determined by polyacrylamide electrophoresis in the presence of dodecyl sulfate and 2-mercaptoethanol, compared to 26 100 +/- 1000 for discoidin. The weight-average molecular weight of pallidin is 250 000 +/- 50 000 determined by equilibrium sedimentation in the presence of D-galactose compared to 100 000 +/- 2000 for discoidin. In equilibrium sedimentation studies, pallidin exhibited some heterogeneity at equilibrium while discoidin was homogeneous. The amino acid composition of pallidin is generally similar but clearly different from the composition of discoidin. The isoelectric point of pallidin is 7.0 compared to 6.1 for discoidin. Like discoidin, pallidin contains no detectable hexosamine or neutral sugar. These results establish that agglutinins from two species of cellular slime molds are distinct. The different properties of the cell-surface agglutinins, pallidin and discoidin, are consistent with their suggested role in species-specific cellular recognition and adhesion in the species of slime mold from which they are derived.  相似文献   

8.
Studies on several different types of carcinomas, with the notable exception of colon carcinoma, have shown that poorly differentiated tumors are frequently deficient in E-cadherin dependent cell-cell adhesion. In this study, we examined Ca2+-dependent cell-cell adhesion in colon carcinoma cell lines. Five poorly differentiated (Clone A, MIP 101, RKO, CCL 222, CCL 228) and four moderately-well differentiated (CX-1, CCL 235, DLD-2, CCL 187) colon carcinoma cell lines were assayed for their ability to form cell-cell aggregates and for their levels of E-cadherin expression. All of the poorly differentiated cell lines exhibited low levels of Ca2+-dependent cell-cell aggregation, in contrast to the moderately-well differentiated cell lines. Contrary to most previous studies, however, we observed that three of the five poorly differentiated cell lines examined expressed E-cadherin by FACS analysis and immunoprecipitation using an E-cadherin mAb. In fact, two of these cell lines expressed a 3- to 4-fold higher level of E-cadherin than that found in the moderately-well differentiated cell lines. mRNA levels for E-cadherin, as evaluated by both RT-PCR and Northern hybridization, corresponded to the levels of protein expression in each of the cell lines. Immunoprecipitation with an E-cadherin mAb, which is known to co-precipitate the catenins, demonstrated that the three poorly differentiated cell lines expressing E-cadherin did not co-precipitate α-catenin, although all of the moderately-well differentiated cell lines expressed both α- and β-catenin. RT-PCR confirmed the absence of the α-catenin mRNA from two of these cell lines. Stable expression of an α-catenin cDNA in one of the poorly differentiated cell lines lacking α-catenin expression resulted in a 5-fold increase in its level of Ca2+-dependent cell-cell aggregation, providing evidence that α-catenin is directly responsible for the loss of cell-cell adhesion in some cell lines. The α-catenin transfectants also exhibited a marked reduction in migration on collagen I. These data indicate that loss of α-catenin expression, as well as E-cadherin expression, can lead to a phenotype associated with poorly differentiated colon carcinomas.  相似文献   

9.
Isolation of a cell-surface receptor for chick neural retina adherons   总被引:13,自引:6,他引:7  
Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion. In solution they increase the rate of cell-cell aggregation. Cell-cell and adheron-cell adhesions of cultured retina cells are selectively inhibited by heparan-sulfate glycosaminoglycan, but not by chondroitin sulfate or hyaluronic acid, suggesting that a heparan-sulfate proteoglycan may be involved in the adhesion process. We isolated a heparan-sulfate proteoglycan from the growth-conditioned medium of neural retina cells, and prepared an antiserum against it. Monovalent Fab' fragments of these antibodies completely inhibited cell-adheron adhesion, and partially blocked spontaneous cell-cell aggregation. An antigenically and structurally similar heparan-sulfate proteoglycan was isolated from the cell surface. This proteoglycan bound directly to adherons, and when absorbed to plastic, stimulated cell-substratum adhesion. These data suggest that a heparan-sulfate proteoglycan on the surface of chick neural retina cells acted as a receptor for adhesion-mediating glycoprotein complexes (adherons).  相似文献   

10.
Receptor protein tyrosine phosphatase T (PTPRT/PTPrho) is frequently mutated in human cancers including colon, lung, gastric, and skin cancers. More than half of the identified tumor-derived mutations are located in the extracellular part of PTPrho. However, the functional significance of those extracellular domain mutations remains to be defined. Here we report that the extracellular domain of PTPrho mediates homophilic cell-cell aggregation. This homophilic interaction is very specific because PTPrho does not interact with its closest homologue, PTPmu, in a cell aggregation assay. We further showed that all five tumor-derived mutations located in the NH(2)-terminal MAM and immunoglobulin domains impair, to varying extents, their ability to form cell aggregates, indicating that those mutations are loss-of-function mutations. Our results suggest that PTPrho may play an important role in cell-cell adhesion and that mutational inactivation of this phosphatase could promote tumor migration and metastasis.  相似文献   

11.
Aquaporin-4 (AQP4) water channels are expressed strongly in glial cells, where they play a role in brain water balance, neuroexcitation, and glial cell migration. Here, we investigated a proposed new role of AQP4 in facilitating cell-cell adhesion. Measurements were made in differentiated primary glial cell cultures from wild-type versus AQP4 knockout mice as well as in null versus AQP4-transfected L-cells, a cell type lacking endogenous adhesion molecules, and in null versus AQP4-transfected Chinese hamster ovary (CHO)-K1 cells and Fisher rat thyroid cells. Using established assays of cell-cell adhesion, we found no significant effect of AQP4 expression on adhesion in each of the cell types. As a positive control, transfection with E-cadherin greatly increased cell-cell adhesion. High-level AQP4 expression also did not affect aggregation of plasma membrane vesicles in a sensitive quasi-elastic light-scattering assay. Further, we found no specific AQP4 binding of a fluorescently labeled oligopeptide containing the putative adhesion sequence in the second extracellular loop of AQP4. These data provide evidence against involvement of AQP4 in cell-cell adhesion.  相似文献   

12.
Contact sites in aggregating cells of Polysphondylium pallidum   总被引:5,自引:0,他引:5  
Aggregating cells of the cellular slime mold Polysphondylium pallidum are completely dissociated by univalent antibody fragments (Fab) directed against membrane antigens. The blocking effect on cell adhesion is species specific: Fab against P. pallidum has little effect on cells of Dictyostelium discoideum, and vice versa. Suspended cells of these species agglutinate together, but within the agglutinates they sort out into separate areas.Absorption of the Fab with growth phase cells removes only part of its blocking activity. This indicates the expression of a new class of target sites of adhesion blocking Fab during cell differentiation from the growth phase to the aggregation competent stage. Another class of target sites is already present on the surface of growth phase cells. In both developmental stages cell adhesion is largely resistant to EDTA.The major target sites of adhesion blocking Fab appear to differ from carbohydrate-binding proteins known as pallidin. Removal of the adhesion blocking activity by absorption of Fab with intact cells does not deplete for anti-pallidin Fab. Cell adhesion is only weakly affected by Fab specific for pallidin I and II.  相似文献   

13.
Cell-cell adhesion molecules in Dictyostelium   总被引:4,自引:0,他引:4  
Multicellularity in the cellular slime mold Dictyostelium discoideum is achieved by the expression of two types of cell-cell adhesion sites. The EDTA-sensitive adhesion sites are expressed very early in the development cycle and a surface glycoprotein of 24,000 Da is known to be responsible for these sites. The EDTA-resistant contact sites begin to accumulate on the cell surface at the aggregation stage of development. Several glycoproteins have been implicated in the EDTA-resistant type of cell-cell binding and the best characterized one has an Mr of 80,000 (gp80). gp80 mediates cell-cell binding via homophilic interaction and its cell binding site has been mapped to an octapeptide sequence. The mechanism by which gp80 mediates cell-cell adhesion will be discussed.  相似文献   

14.
The scavenger receptor expressed by endothelial cells (SREC) with an extremely large cytoplasmic domain, was originally identified in a human endothelial cell line. In this study, we have cloned a second isoform named SREC-II and shown that there is a heterophilic interaction between SREC-I and -II at their extracellular domains. The cDNA for murine SREC-II encodes an 834-amino acid protein with 35% homology to SREC-I. Similar to SREC-I, SREC-II contains multiple epidermal growth factor-like repeats in its extracellular domain. However, in contrast to SREC-I, SREC-II had little activity to internalize modified low density lipoproteins (LDL). A Northern blot analysis revealed a tissue expression pattern of SREC-II similar to that of SREC-I with predominant expression in human heart, lung, ovary, and placenta. Mouse fibroblast L cells with no tendency to associate showed noticeable aggregation when SREC-I was overexpressed in these cells, whereas overexpression of SREC-II caused only slight aggregation. Remarkably, intense aggregation was observed when SREC-I-expressing cells were mixed with those expressing SREC-II. Deletion of almost all of the cytoplasmic receptor domain had no effect on the receptor expression and cell aggregation, indicating that solely the extracellular domain is involved in cell aggregation. The association of SREC-I and -II was effectively suppressed by the presence of scavenger receptor ligands such as acetylated LDL and oxidized LDL. These findings suggest that SREC-I and -II show weak cell-cell interaction by their extracellular domains (termed homophilic trans-interaction) but display strong heterophilic trans-interaction through the extracellular epidermal growth factor-like repeat domains.  相似文献   

15.
Lipid phosphate phosphohydrolase-3 (LPP3) is a cell surface protein that exhibits ectoenzyme activity. Previously, we identified human LPP3 in a functional assay of angiogenesis and showed that the Arg-Gly-Asp (RGD) motif in the proposed second extracellular domain interacts with a subset of integrins to mediate cell-cell adhesion. In contrast to the RGD domain of human LPP3, murine Lpp3 contains a variant sequence, Arg-Gly-Glu (RGE). Whether the RGE motif of murine Lpp3 mediates cell-cell interaction has not been studied. In this report, we test the hypothesis that the cell adhesion function of the LPP3 protein is conserved across mouse and human. A glutathione S-transferase (GST) fusion protein of the proposed second extracellular loop of the murine Lpp3 sequence (GST-mLpp3-RGE) promoted attachment of cells in a long-term cell adhesion assay. GST-mLpp3-RGE interacted with alpha(5)beta(1) and alpha(v)beta(3) integrins in a solid-phase ELISA, while a mutant control, GST-hLPP3-RAD, did not. Long-term adhesion of endothelial cells to GST-mLpp3-RGE induced phosphorylation of FAK, SHC, and CAS, whereas adhesion to GST-hLPP3-RAD failed to do so. Upon long-term adhesion both the GST-hLPP3-RGD and GST-mLpp3-RGE substrates bound to the alpha(5)beta(1) integrin of FRT-alpha(5)(+) cells, an interaction that was inhibited by an anti-alpha(5) integrin antibody. In addition, a cell aggregation assay showed that the intact mLpp3-RGE protein interacts with alpha(5)beta(1) and alpha(v)beta(3) integrins expressed by adjacent cells, an interaction that can be blocked by GRGDSP peptides and anti-LPP3-RGD antibodies. These data, together with the known importance of integrins in angiogenesis, provide a mechanism for the function of LPP3 in cell-cell interactions in both human and mouse.  相似文献   

16.
The aggregation factor (AF) from the sponge Geodia cydonium is known to be a complex proteinaceous particle, composed of a series of different (glyco)proteins (Mr lower than 150,000) around a 90S sunburst-like core structure. One of the low-Mr proteins is the 47-KD cell binding fragment. We describe a new monoclonal antibody (mAb), III1E6, raised against purified AF particles, which recognizes in tissue slices structures present both on the plasma membrane and in a network-like manner in the extracellular space. By applying immunoelectron microscopical, immunoblotting, and immunoaffinity chromatographical techniques, the mAb III1E6 was shown to recognize the core structure of the AF particle. Cell adhesion studies revealed that the mAb does not inhibit AF mediated cell-cell adhesion but abolishes AF-caused attachment of cells to collagen. Electron microscopic data show that III1E6 prevents association of AF particles with collagen fibrils. By applying the techniques of immunoblotting and of protein-protein recognition on the solid phase in vitro, we could formulate the following series of events: the AF particle recognizes, with its 47-KD cell binding fragment, the aggregation receptor protein in the plasma membrane and with its core structure the collagen fibrils. These fibrils interact optionally, either via the same route or via the collagen assembly factor, with an adjacent cell surface. These findings demonstrate that the AF particle is not only the key molecule for cell-cell adhesion but also a component of cell-matrix interactions.  相似文献   

17.
Antigen 117 is a glycolipid-anchored cell surface protein implicated in cell-cell cohesion of Dictyostelium discoideum amoebae. Previous studies have demonstrated that during cell aggregation some of the protein is released from the cell surface. Here we report the characterization of the enzymatic activity involved in the 117 antigen release. The data indicate that the releasing enzyme is a phosphatidylinositol phospholipase C. The data also indicate that structural features of glycolipid anchors are conserved in a variety of organisms.  相似文献   

18.
The urokinase receptor (uPAR) on the cell surface plays an important role in extracellular proteolysis, cell migration and adhesion. Soluble uPAR (suPAR) has been recently discovered in plasma, but its origin is unclear. Our results now demonstrate that both unstimulated blood mononuclear and endothelial cells can release suPAR and that the release is enhanced when either mononuclear cells or thrombocytes are cultured together with endothelial cells. Co-culture without cell-cell contacts fails to enhance suPAR release. We also found suPAR fragments, known to be potent inducers of chemotaxis, in co-culture growth medium samples. Taken together, our results suggest that normal plasma suPAR can be produced by endothelial and mononuclear cells and that suPAR release in cell-cell contacts may have a regulatory role in cell adhesion.  相似文献   

19.
Acanthamoeba are free-living amoebae found in most environments that can cause brain and corneal infections. To infect humans, these pathogens must interact with host cells and the extracellular matrix (ECM). In order to define the mode by which amoebae recognize ECM components and process this recognition, we analyzed Acanthamoeba culbertsoni attachment and invasion, respectively, on collagen I and laminin-1 and on tridimensional collagen I and matrigel matrices. We determined that amoebae surface proteins are involved in adhesion, that exogenous sugars can decrease adhesion and invasion, and that adhesion and invasion are dependent on microfilament reorganization. In addition, we determined the role of serine- and metallo-proteases on invasion and found that adhesion was blocked when amoebae were treated with a metallo-protease inhibitor. Collectively, these results suggest that adhesion and invasion are protease- and microfilament-dependent events in which amoebic surface proteins play a pivotal role.  相似文献   

20.
Marine sponges (Porifera) display an ancestral type of cell-cell adhesion, based on carbohydrate-carbohydrate interaction. The aim of the present work was to investigate further details of this adhesion by using, as a model, the in vitro aggregation of dissociated sponge cells. Our results showed the participation of sulfated polysaccharides in this cell-cell interaction, as based on the following observations: (1) a variety of sponge cells contained similar sulfated polysaccharides as surface-associated molecules and as intracellular inclusions; (2) 35S-sulfate metabolic labeling of dissociated sponge cells revealed that the majority (two thirds) of the total sulfated polysaccharide occurred as a cell-surface-associated molecule; (3) the aggregation process of dissociated sponge cells demanded the active de novo synthesis of sulfated polysaccharides, which ceased as cell aggregation reached a plateau; (4) the typical well-organized aggregates of sponge cells, known as primmorphs, contained three cell types showing sulfated polysaccharides on their cell surface; (5) collagen fibrils were also produced by the primmorphs in order to fill the extracellular spaces of their inner portion and the external layer surrounding their entire surface. Our data have thus clarified the relevance of sulfated polysaccharides in this system of in vitro sponge cell aggregation. The molecular basis of this system has practical relevance, since the culture of sponge cells is necessary for the production of molecules with biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号