首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.  相似文献   

5.
6.
7.
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.  相似文献   

8.
9.
S I Grewal  M J Bonaduce  A J Klar 《Genetics》1998,150(2):563-576
Position-effect control at the silent mat2-mat3 interval and at centromeres and telomeres in fission yeast is suggested to be mediated through the assembly of heterochromatin-like structures. Therefore, trans-acting genes that affect silencing may encode either chromatin proteins, factors that modify them, or factors that affect chromatin assembly. Here, we report the identification of an essential gene, clr6 (cryptic loci regulator), which encodes a putative histone deacetylase that when mutated affects epigenetically maintained repression at the mat2-mat3 region and at centromeres and reduces the fidelity of chromosome segregation. Furthermore, we show that the Clr3 protein, when mutated, alleviates recombination block at mat region as well as silencing at donor loci and at centromeres and telomeres, also shares strong homology to known histone deacetylases. Genetic analyses indicate that silencing might be regulated by at least two overlapping histone deacetylase activities. We also found that transient inhibition of histone deacetylase activity by trichostatin A results in the increased missegregation of chromosomes in subsequent generations and, remarkably, alters the imprint at the mat locus, causing the heritable conversion of the repressed epigenetic state to the expressed state. This work supports the model that the level of histone deacetylation has a role in the assembly of repressive heterochromatin and provides insight into the mechanism of epigenetic inheritance.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Budding yeast silent chromatin, or heterochromatin, is composed of histones and the Sir2, Sir3, and Sir4 proteins. Their assembly into silent chromatin is believed to require the deacetylation of histones by the NAD-dependent deacetylase Sir2 and the subsequent interaction of Sir3 and Sir4 with these hypoacetylated regions of chromatin. Here we explore the role of interactions among the Sir proteins in the assembly of the SIR complex and the formation of silent chromatin. We show that significant fractions of Sir2, Sir3, and Sir4 are associated together in a stable complex. When the assembly of Sir3 into this complex is disrupted by a specific mutation on the surface of the C-terminal coiled-coil domain of Sir4, Sir3 is no longer recruited to chromatin and silencing is disrupted. Because in sir4 mutant cells the association of Sir3 with chromatin is greatly reduced despite the partial Sir2-dependent deacetylation of histones near silencers, we conclude that histone deacetylation is not sufficient for the full recruitment of silencing proteins to chromatin and that Sir-Sir interactions are essential for the assembly of heterochromatin.  相似文献   

17.
Verdel A  Moazed D 《FEBS letters》2005,579(26):5872-5878
Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent discoveries have uncovered a role for the RNA interference (RNAi) pathway in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe and other eukaryotes. Purification of two RNAi complexes, RITS and RDRC, from fission yeast has provided further insight into the mechanism of RNAi-mediated heterochromatin assembly. These discoveries have given rise to a model in which small interfering RNA molecules act as specificity factors that initiate epigenetic chromatin modifications and double strand RNA synthesis at specific chromosome regions.  相似文献   

18.
19.
20.
Ai X  Parthun MR 《Molecular cell》2004,14(2):195-205
The yeast Hat1p/Hat2p type B histone acetyltransferase complex is localized to both the cytoplasm and nucleus. We isolate the nuclear form of the Hat1p/Hat2p complex and find that it copurifies with the product of the uncharacterized open reading frame YLL022C (named Hif1p). The functional significance of the association of Hif1p with the Hat1p/Hat2p complex is confirmed by the observation that hif1Delta and hat1Delta strains display similar defects in telomeric silencing and DNA double-strand break repair. Hif1p is a histone chaperone that selectively interacts with histones H3 and H4. Hif1p is also a chromatin assembly factor, promoting the deposition of histones in the presence of a yeast cytosolic extract. In vivo, the nuclear Hat1p/Hat2p/Hif1p complex is bound to acetylated histone H4, as well as histone H3. The association of Hif1p with acetylated H4 requires Hat1p and Hat2p providing a link between type B histone acetyltransferases and chromatin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号