首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of industrial exploitation of a biofiltration plant tailored for purifying gaseous discharges of hazardous organic components such as toluene, cyclohexane, and xylene, are examined. Both numerical and compositional variations were monitored for a long-term (more than 1.5 years) utilization process in an association of microorganisms decomposing organic pollutants. A population of microbial association composed by one yeast and two bacterial strains in the biofilm on the surface of filtering sheets was abundant (10(8)-10(9) yeast cells/cm2 and 10(10)-10(11) bacterial cells/cm2) and stable during the whole period of monitoring. A microbial association in the culture medium averaging 10(6) yeast cells/l and 10(8) bacterial cells/l is more susceptible to technogenic impacts and seasonal fluctuations. Overall, the biofilter as an open and autonomic system maintained its microbial association, thereby providing a high-degree (93-98%) purification of industrial gaseous discharges from organic pollutants.  相似文献   

2.
Summary Biodegradation rates of 12 phenols were measured with respect to acclimated microbial biomass ranging from 2.3×104 to 2.3×108 cells/l. Rates ranged between 0.02 mg l–1 day–1 for 1.6 mg/lp-bromophenol exposed to 2.3×104 cells/l and 1.41 mg l–1 day–1 for 3.2 mg/lp-methylphenol exposed to 2.3×108 cells/l. Generally, rates for all phenols were first-order in substrate concentration and zero-order in biomass concentration. Bromophenol biodegradation was preceded by lag periods of varying lengths and to a small extent the rate was dependent on microbial biomass. Results from this study suggest chemical biodegradation generally exhibits pseudo-first-and occasionally, second-order kinetics.  相似文献   

3.
Investigations on the abundance, biomass and position of heterotrophic flagellates (HF) in the benthic microbial food web of a melt water stream on King George Island, Antarctic Peninsula, were undertaken during the Antarctic summer from 23rd December 1997 until 13th March 1998. Abundance and biomass of potential HF resources (picophotoautotrophic and non-photoautotrophic bacteria) as well as potential predators on HF (ciliates and meiofauna) were also investigated. HF abundance ranged from approximately 9 × 103 to 81 × 103 cells cm–3, values which fall into the same range as those found in lower latitudes. Numerically important benthic HF were euglenids, kinetoplastids, thaumatomastigids and especially chrysomonads. Most species identified have been shown to have a worldwide distribution. Abundance of the benthic ciliates ranged from 27 to 950 cells cm–3. Mean bacterial abundance was 1.9 × 107 and 5.2 × 108 cells cm–3 for picophotoautotrophic and non-photoautotrophic benthos, respectively. The well-developed microbial community was able to support the large number of nematods, gastotrichs, tardigrads and rotifers with abundances reaching more than 1000 individuals cm–3. The largest portion of heterotrophic biomass was formed by the meiofauna with a mean of 63 g C cm–3, followed by that of the heterotrophic bacteria with 4.80 g C cm–3. Picophotoautotrophic bacteria contributed a mean of 1.37 g C cm–3. HF and ciliates mean biomass was 0.61 and 1.99 g C cm–3, respectively, with the HF biomass comprising between <10 and 70% of the total protozoan biomass. The data obtained in this study identify the melt water stream as a hot-spot of heterotrophic microbial and meiofaunal activity during the austral summer. The HF in the melt water stream formed a diverse group in terms of taxa and potential feeding types. Chrysomonads, kinetoplastids, euglenids and thaumatomastigida were the most abundant taxa. A classification into feeding types identified an average of 34% of the total HF as bacterivorous while all others were able to utilise other, larger organisms as resources. Potential trophic interactions between HF and bacteria and higher trophic levels are discussed.  相似文献   

4.
The ability of biosurfactant obtained from the probiotic bacterium Lactococcus lactis 53 to inhibit adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed biosurfactant layer was investigated in a parallel-plate flow chamber. The microbial cell surfaces and the silicone rubber with and without an adsorbed biosurfactant layer were characterized using contact-angle measurements. Water contact angles indicated that the silicone-rubber surface with adsorbed biosurfactant was more hydrophilic (48°) than bare silicone rubber (109°). The results showed that the biosurfactant was effective in decreasing the initial deposition rates of Staphylococcus epidermidis GB 9/6 from 2,100 to 220 microorganisms cm–2 s–1, Streptococcus salivarius GB 24/9 from 1,560 to 137 microorganisms cm–2 s–1, and Staphylococcus aureus GB 2/1 from 1,255 to 135 microorganisms cm–2 s–1, allowing for a 90% reduction of the deposition rates. The deposition rates of Rothia dentocariosa GBJ 52/2B, Candida albicans GBJ 13/4A, and Candida tropicalis GB 9/9 were far less reduced in the presence of the biosurfactant as compared with the other strains. This study constitutes a step ahead in developing strategies to prevent microbial colonization of silicone-rubber voice prostheses.  相似文献   

5.
In 2003, 50 game carcasses (ungulates) originating from one Austrian hunting ground were subject to visual examination for (fecal) contamination of the body cavities and microbiological testing of the body cavities in order to assess variations in microbial surface contamination in the season June–August compared to October–December. No carcass tested positive for the bacterial pathogens Salmonella or Listeria. Bacterial surface counts in October–December (median values: total aerobic count: 4.12 log10 colony-forming-units (cfu)/cm2; Enterobacteriaceae: 2.48 log10 cfu/cm2) were significantly lower than those in June–August (median values: total aerobic count: 5.65 log10 cfu/cm2; Enterobacteriaceae: 3.45 log10 cfu/cm2). The cooling regime (0.4 °C, 62% relative humidity) allowed no microbial growth for 96 h but was associated with weight loss of the carcasses. All carcasses had undergone a precooling phase of 8–12 h, with temperatures of 17.8±1.2 °C in the season June–August and 9.8±1.2 °C in October–December. This temperature difference was identified as the most probable effector for the observed seasonal variation. The results demonstrate the need for a continuous cool chain after evisceration of game carcasses.  相似文献   

6.
Dobretsov  Sergey  Wahl  Martin 《Hydrobiologia》2001,464(1-3):27-35
We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15N content of samples collected during a 6-week 15N–NH4 tracer addition in each stream. The 15N was added during late autumn to Upper Ball Creek, a second-order stream at the Coweeta Hydrologic Lab, North Carolina, U.S.A.; during spring to Walker Branch, a first-order stream on DOE's Oak Ridge National Environmental Research Park, Tennessee; and during summer to Bear Brook, a first-order stream in the Hubbard Brook Experimental Forest, New Hampshire. FBOM was the largest component of organic matter and N standing stock in all streams. Microbial N represented the highest proportion of total N in leaves and least in FBOM in Walker Branch and Bear Brook. In Upper Ball Creek, the proportion of microbial N was higher in FBOM than in used biofilm or on leaves. Standing stock of microbial N on leaves and in FBOM ranged from 37 mg N m–2 in Bear Brook to 301 mg N m–2 in Walker Branch. Percent of detrital N in living microbial cells was directly related to total microbial biomass (fungal and bacterial biomass) determined from microscopic counts. 15N values for microbes were generally higher than for bulk detritus, which would result in higher 15N values for animals preferentially consuming or assimilating microbial cells. The proportion of 15N taken up by detritus during the 15N experiments that remained in microbial cells by the end of the experiments was highest for wood biofilm in Upper Ball Creek (69%), leaves in Walker Branch (65%) and FBOM in Upper Ball Creek (31%). Lower retention proportions (<1–25%) were observed for other substrates. Our results suggest that microbial cells associated with leaves and wood biofilm were most active in 15N–NH4 immobilization, whereas microbial cells associated with FBOM immobilized little 15N from stream water.  相似文献   

7.
Two separate 4 (bacterial concentrations)×6 (yeast concentrations) full factorial experiments were conducted in an attempt to identify a novel approach to minimize the effects caused by bacterial contamination during industrial production of ethanol from corn. Lactobacillus plantarum and Lactobacillus paracasei, commonly occurring bacterial contaminants in ethanol plants, were used in separate fermentation experiments conducted in duplicate using an industrial strain of Saccharomyces cerevisiae, Allyeast Superstart. Bacterial concentrations were 0, 1×106, 1×107 and 1×108 cells/ml mash. Yeast concentrations were 0, 1×106, 1×107, 2×107, 3×107, and 4×107 cells/ml mash. An increased yeast inoculation rate of 3×107 cells/ml resulted in a greater than 80% decrease (P<0.001) and a greater than 55% decrease (P<0.001) in lactic acid production by L. plantarum and L. paracasei, respectively, when mash was infected with 1×108 lactobacilli/ml. No differences (P>0.25) were observed in the final ethanol concentration produced by yeast at any of the inoculation rates studied, in the absence of lactobacilli. However, when the mash was infected with 1×107 or 1×108 lactobacilli/ml, a reduction of 0.7–0.9% v/v (P<0.005) and a reduction of 0.4–0.6% v/v (P<0.005) in the final ethanol produced was observed in mashes inoculated with 1×106 and 1×107 yeast cells/ml, respectively. At higher yeast inoculation rates of 3×107 or 4×107 cells/ml, no differences (P>0.35) were observed in the final ethanol produced even when the mash was infected with 1×108 lactobacilli/ml. The increase in ethanol corresponded to the reduction in lactic acid production by lactobacilli. This suggests that using an inoculation rate of 3×107 yeast cells/ml reduces the growth and metabolism of contaminating lactic bacteria significantly, which results in reduced lactic acid production and a concomitant increase in ethanol production by yeast.  相似文献   

8.
In microbiological studies in streams, pebble samples have until now been taken out of the water following the conventional method. However, this allows the loss of microorganisms as a result of the removal of overlying water. In the present study, to minimize the loss of microorganisms, we have developed a new sampling method, called the submerged method, for collecting microorganisms living on pebbles in streams. The abundance of microorganisms on natural pebbles and artificial clay tiles, both of which had biofilms developing on their surfaces, was measured using both the conventional and submerged methods and the results from the two methods were compared. The cell densities of bacteria (0.10–14.00 × 108 cells cm–2), heterotrophic nanoflagellates (0.36–50.30 × 104 cells cm–2), and ciliates (0.071–88.27 × 102 cells cm–2) measured by the submerged method tended to be higher than those obtained by the conventional method, although there were only a few cases in which a significant difference existed between microbial abundances determined by the two methods. Also supported by microscopic observation, these results suggest the presence of planktonic and/or weakly attached microorganisms on substrate materials in streams. Significant correlations between the concentration of chlorophyll a and the cell densities of heterotrophic microorganisms and significant correlations among heterotrophic microorganisms suggest the presence of active microbial food webs in streams.  相似文献   

9.
The biomass and production (thymidine incorporation) of heterotrophic bacterioplankton has been assessed from July, 1988, to October, 1989. in Lake Xolotlán, Nicaraqua. Bacterial abundance was high, 2–3.1010 cells.l–1, and bacterial biomass averaged ca. 0.75 mg C.l–1, or roughly 20% of the partivculate organic carbon. Bactrial production averaged between 3.5–5 g C.l–1.h–1 and on a areal basis was 650–959 mg C.m–2.d–1 or 13–20% ofthe primary production. Although bacterial production (volumetric basis) was typical for eutrophic lakeks, the bacterial specific growth rate was low, the bacteial population doubling time was ca. 1 week, perhaps indicating that there was a low grazing pressure on the bacteria.  相似文献   

10.
A transect along the axis of the headwaters of a tidal estuary was sampled for microbial, nutrient, and physical parameters. Chlorophylla averaged 42g 1–1 and phytoplankton comprised an estimated 80% of the total microbial biomass as determined by adenosine triphosphate (ATP). Bacterial concentrations ranged from 0.3–53.9×106 cells ml–1 and comprised about 4% of the total living microbial biomass. Bacterial production, determined by3H-methyl-thymidine incorporation was about 0.05–2.09× 109 cells 1–1 h–1, with specific growth rates of 0.26–1.69 d–1. Most bacterial production was retained on 0.2m pore size filters, but passed through 1.0m filters. Significant positive correlations were found between all biomass measures and most nutrient measures with the exception of dissolved inorganic nitrogen nutrients where correlations were negative. Seasonal variability was evident in all parameters and variability among the stations was evident in most. The results suggest that bacterial production requires a significant carbon input, likely derived from autotrophic production, and that microbial trophic interactions are important.  相似文献   

11.
The chemical and biological conditions, and the bacteria-heterotrophic nanoflagellate (HNF) relationship were investigated in the vicinity of Funka Bay, southwest of Hokkaido, Japan during early spring 1999. At the time of sampling, chlorophyll a concentration, bacteria, phycoerythrin rich-cyanobacteria, and HNF abundance were in the following ranges: 0.3–3.6 g l–1, 2.5–5.6 × 105 cells ml–1, 0.6–1.2 × 103 cells ml–1, and 2.2–4.2 × 103 cells ml–1, respectively. Dissolved inorganic nitrogen, phosphate and silicate concentrations were in the ranges: 8.7–12.2 M, 0.9–2.0 M, and 21.6–25.5 M, respectively. Primary production ranged from 6.4 to 76.3 mg C m–3 d–1. Using water samples from regions of different productivity levels (in and outside bay), the bacteria - HNF relationship was uncoupled experimentally by the size-fractionation technique. Higher primary production (19.9 mg C m–3 d–1) in the bay supported higher bacterial growth rate (0.029 h–1). However, outside the bay both primary production (6.4 mg C m–3 d–1) and bacterial growth rate (0.007 h–1) were lower. The HNF growth rates and grazing rates were similar for both but by comparing both HNF grazing capacity and bacterial production, there was net decrease in bacterial abundance outside the bay and net increase inside the bay. The microbial parameters (rates and abundance) and the amount of carbon flow estimated through the phytoplankton – dissolved organic matter (DOM) – bacteria loop were different between the coastal station and the open ocean station. However HNF grazing and growth rates was similar for both stations.  相似文献   

12.
The response of the microbial community (in term of abundance and enzymatic activity) was investigated to test the effect of different bioremediation protocols to naturally enhance decomposition of organic polymers in harbour sediments (Genoa Harbour, Italy, N–W Mediterranean). Bioremediation techniques tested were bioaugmentation (5 different microorganisms inocula), biostimulation (air supply), and natural attenuation. The coupling bioaugmentation/biostimulation was also tested. After 60days, following the bioaugmentation protocol, bacterial densities correlated to the quantities of inocula amended to the boxes, suggesting that allochthonous community was able to survive and multiply. However, while bioaugmentation alone seems not to be able to carry out significative degradation, its coupling with air insufflations produced the best response: here bacterial densities increased, especially in the water (from 2.3×107 to 3.50×108cells ml–1), average cell size and enzymatic activities increased, and sedimentary organic matter was significantly depleted (PRT 5-folds reduction, CHO 1.5-folds reduction). The strong coupling observed between the sediment and water compartments together with the greatest microbial response observed in this latter suggest that the sediment–water interface may constitute a key compartment for the occurring of biodegradation processes in organic-rich sediments.  相似文献   

13.
Summary Previous Antarctic studies have pointed out the ecological importance of ornithogenic soils. However, few data exist to determine the impact of the bird's manuring on surrounding seawater microbial populations. In order to evaluate the influence of birds manuring, the relationships between the spatial distributions of seawater bacterial microflora and some related biological (chlorophyll pigments) and physicochemical (seston, NH4 + & NO3 ) parameters were studied during the Antarctic summer 1988 in the Terre Adelie land area. The clearly decreasing gradient from the shore towards the open sea previously reported for bacterial microflora (from 104 to 1 CFU ml–1 for heterotrophic bacteria and from 105 to 5.0103 cells ml–1 for total bacteria) was also observed for organic and mineral nutrients (from 1.09 mg Cl–1 to 0.1 mg Cl–1 for POC and from 196 to 17 mole l–1 for NH 4 + ) but not for chlorophyll pigments. The absence of any observable phytoplankton enrichment in the coastal area suggests a direct interaction between the birds manuring and the bacterial seawater microflora.  相似文献   

14.
The aims of the present investigation were (a) to compare the lateral mobility of membrane receptors of human fibroblasts and polymorphonuclear leukocytes (PMNL) labelled with either platelet-derived growth factor (PDGF), or the lectin wheat germ agglutinin (WGA), and (b) to study effects of serum or PDGF on the mobility of these receptor molecules in human fibroblasts. Human foreskin fibroblasts (AG 1523) were grown on coverslips either under standard (10%) or under serum-free conditions yielding normal and starved cells, respectively. The receptor mobility was studied in response to exposure to PDGF, or serum, in short time or prolonged incubations. Human polymorphonuclear leukocytes (PMNL) were adhered to microscope slides by clotting drops of blood. They were stained with rhodaminated PDGF or fluoresceinated WGA. The diffusion of labelled receptors was assessed with fluorescence recovery after photobleaching (FRAP). It was found that (a) fibroblasts grown at normal serum concentration had a lower diffusion coefficient (D=3×10–10 cm2 s–1) for the PDGF-receptor and a slightly lower mobile fraction (R=60%) than starved cells (D=5×10–10 cm2s–1 and R=73%), (b) addition of serum to starved cells increased both D and R for the PDGF receptor to 12×10–10 cm2 s–1 and 96%, respectively, (c) a similar pattern was obtained for WGA-labelled glycoconjugates indicating general membrane effects of serum-induced cell stimulation, and (d) in PMNL the PDGF receptor displayed motility characteristics (D=3–4×10–10 cm2 s–1 and R=59%) similar to those in fibroblasts, possibly suggesting equivalent anchorage mechanisms in the membrane.  相似文献   

15.
The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.  相似文献   

16.
The kinetics of amylolytic enzyme formation by a yeast cell wall lytic Arthrobacter species were studied. Cultivation on autoclaved cells of baker's yeast showed that amylase formation was closely related to trehalose and glycogen dissimilation. Growth on yeast glycogen (0.5%) proceeded quite rapidly ( = 0.31 h–1) with extensive amylase formation during exponential cell multiplication and a further low increase in activity during the stationary phase. Beside amylolytic activity [450 units (U) l–1] the formation of a relatively high level of -glucosidase (90 U l–1) was detected, the latter almost exclusively bound to bacterial cells. Growth on 0.5% trehalose occurred at a reduced rate ( = 0.22 h–1) with post-logarithmic enzyme synthesis in the stationary phase. Amylase activity attained a level of 1200 U l–1, whereas -glucosidase was very low at 7.7 U l–1. Continuous culture experiments in the chemostat showed maximal volumetric productivity of amylase (105 U l–1 h–1) at a dilution rate of 0.15 h–1. Growth on various carbohydrates revealed low levels of amylolytic activity (<100 U l–1), which were increased by a -1,4-glucans and oligosaccharides such as starch, dextrin, maltotriose and maltose. On 0.5% maltose, growth-associated enzyme synthesis (230 U l–1) was detected at a reduced growth rate ( = 0.14 h–1). Amylolytic enzyme preparations from the culture fluid showed an unusual cleavage pattern; acting on starch, the polymer was almost completely hydrolysed to maltotriose and maltose in a molar ratio of 3:1.Correspondence to: W. A. Hampel  相似文献   

17.
Three methods of estimating bacterial productivity were compared using parallel samples of Atlantic Ocean water (within 0.25–15 km of the Georgia coast). The frequency-of-dividing cells (FDC) method and the [3H]thymidine incorporation method gave results which were strongly correlated (r=0.97), but the FDC estimates were always higher (X2 to X7) than the [3H]thymidine estimates. Estimates of bacterial productivity ranged from 2–4×108 cells·l–1·h–1 at 0.25 km from shore to 1–9×107cells·l–1·h–1 at 15 km. A method involving incubation of 3-m filtrates and direct counting gave results that could not be easily translated into estimates of bacterial productivity. Application of the FDC method to sediment samples gave high productivity estimates, which could be not reconciled with productivity estimates based on sediment oxygen uptake.  相似文献   

18.
Using a mechanism of `self-generation', polymer surfaces were coated with ocular mucin-type glycoproteins that were extracted from tear fluid and immobilized through specific interaction with a lectin, jacalin. Separately, jacalin affinity chromatography of tear fluid showed the main retained components had molecular weights higher than 200 kDa. In evaluations of bacterial adhesion, a model surface with jacalin-immobilized ocular mucins took up a significantly smaller number of adhered Staphylococcus epidermidis (0.041×106 cells cm–2) than a bare surface of the same polymer (1.202×106 cells cm–2). The lectin-mediated ocular mucin coating reduced the bacteria uptake by about 95% showing that the presence of mucin on surfaces may afford a general protection against bacterial colonization.  相似文献   

19.
We studied the dynamics of microbial communities attached to model aggregates (4-mm-diameter agar spheres) and the component processes of colonization, detachment, growth, and grazing mortality. Agar spheres incubated in raw seawater were rapidly colonized by bacteria, followed by flagellates and ciliates. Colonization can be described as a diffusion process, and encounter volume rates were estimated at about 0.01 and 0.1 cm3 h−1 for bacteria and flagellates, respectively. After initial colonization, the abundances of flagellates and ciliates remained approximately constant at 103 to 104 and ~102 cells sphere−1, respectively, whereas bacterial populations increased at a declining rate to >107 cells sphere−1. Attached microorganisms initially detached at high specific rates of ~10−2 min−1, but the bacteria gradually became irreversibly attached to the spheres. Bacterial growth (0 to 2 day−1) was density dependent and declined hyperbolically when cell density exceeded a threshold. Bacterivorous flagellates grazed on the sphere surface at an average saturated rate of 15 bacteria flagellate−1 h−1. At low bacterial densities, the flagellate surface clearance rate was ~5 × 10−7 cm2 min−1, but it declined hyperbolically with increasing bacterial density. Using the experimentally estimated process rates and integrating the component processes in a simple model reproduces the main features of the observed microbial population dynamics. Differences between observed and predicted population dynamics suggest, however, that other factors, e.g., antagonistic interactions between bacteria, are of importance in shaping marine snow microbial communities.  相似文献   

20.
Microbial diversity, numbers, and metabolic activities in Minnesota peatlands were investigated using a variety of microbial enrichment and enumeration procedures together with radioisotopic measurements of microbial degradative processes. Minnesota peatlands were shown to contain large microbial populations of wide metabolic diversity. Direct counts of bacteria using epifluorescence microscopy indicated bacterial populations of about 108 ml–1 of peatland water, irrespective of depth. Radioisotopic most-probable-number (MPN) counts of heterotrophs able to mineralize14C-labeled substrates to14CO2 showed significant populations of glucose degraders (104–106 ml–1) as well as degraders of benzoate (102–103 ml–1), 2,4-dichlorophenoxyacetate (102–105 ml–1), and sphagnum (103–107 ml–1) in the various peatlands examined. The MPNs of NO3 reducers varied from 103–106 ml–1, SO4 reducers from 102–103 ml–1, methanogenic bacteria from 103–106 ml–1, and methane oxidizers from 103–104 ml–1, depending on sampling site and depth. Eighty pure cultures of aerobic bacteria and fungi were isolated from Minnesota peats. Most of those cultures tested were able to grow on at least 20 organic compounds (carbohydrates, aromatic molecules, hydrocarbons, etc.) as sole sources of carbon and energy. One isolate, aBacillus, was able to fix atmospheric N2. Several of the isolates were able to mineralize14C-labeled lignin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号