首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a series of kin-selection models, I examine factors that favor multiple egg-laying queens (polygyny) in eusocial Hymenoptera colonies. One result is that there is a theoretical conflict of interest between the founding queens and their daughter workers over how many and which individuals should be the extra reproductives. Both castes should prefer their full sisters. Therefore, primary polygyny (multiple related foundresses) may favor queens while secondary polygyny (related queens added to mature colonies) may favor workers. Polygyny, itself, was found to be favored by high colony survivorship and low probability of queens contributing eggs to successive broods. Polygyne colonies, however, did not need to produce more offspring per brood to be selectively favored; they could be half as productive per brood as monogyne ones and still have higher lifetime fitness under some conditions. For reproductive data from eight ant species with both monogyne and polygyne colonies, the model generates results that are consistent with a kin-selection explanation of polygyny in all of them. It is proposed that queen number is an ecologically flexible trait that is influenced by a broad set of factors but is not necessarily linked to specific habitat types. Furthermore, neither polygyny nor monogyny may be reliably considered as the primitive or ancestral Hymenopteran social system. The optimal queen number within a species may evolutionarily increase or decrease, depending on the direction of environmental change.  相似文献   

2.
Alternative genetic foundations for a key social polymorphism in fire ants   总被引:2,自引:0,他引:2  
Ross KG  Krieger MJ  Shoemaker DD 《Genetics》2003,165(4):1853-1867
Little is known about the genetic foundations of colony social organization. One rare example in which a single major gene is implicated in the expression of alternative social organizations involves the presumed odorant-binding protein gene Gp-9 in fire ants. Specific amino acid substitutions in this gene invariably are associated with the expression of monogyny (single queen per colony) or polygyny (multiple queens per colony) in fire ant species of the Solenopsis richteri clade. These substitutions are hypothesized to alter the abilities of workers to recognize queens and thereby regulate their numbers in a colony. We examined whether these same substitutions underlie the monogyny/polygyny social polymorphism in the distantly related fire ant S. geminata. We found that Gp-9 coding region sequences are identical in the polygyne and monogyne forms of this species, disproving our hypothesis that one or a few specific amino acid replacements in the protein are necessary to induce transitions in social organization in fire ants. On the other hand, polygyne S. geminata differs genetically from the monogyne form in ways not mirrored in the two forms of S. invicta, a well-studied member of the S. richteri clade, supporting the conclusion that polygyny did not evolve via analogous routes in the two lineages. Specifically, polygyne S. geminata has lower genetic diversity and different gene frequencies than the monogyne form, suggesting that the polygyne form originated via a founder event from a local monogyne population. These comparative data suggest an alternative route to polygyny in S. geminata in which loss of allelic variation at genes encoding recognition cues has led to a breakdown in discrimination abilities and the consequent acceptance of multiple queens in colonies.  相似文献   

3.
We surveyed 165 sites to determine the ecological factors influencing the distribution, abundance, and occurrence of polygyny in the red imported fire ant (Solenopsis invicta) in Louisiana. On average, sites had 220 nests/ha, 14% of mounds were polygyne, and 22% of sites had ≥ one polygyne mound. The density of nests and ants per site both increased with the proportion of mounds that were polygyne and the organic and phosphorous content of the soil but decreased with longitude, latitude, and the silt: clay, calcium and sodium content of the soil. Ant density also declined with ambient relative humidity. These multivariate models explained ~25% of the variation in nest and ant density per site. Mean mound size per site increased with the phosphorous content of the soil and the number of nests at the site suggesting that prospective queens may select sites that are conducive to produce large mounds. Mean nest size, however, decreased with the proportion of nests that were polygyne and soil potassium while mounds in forests were typically larger than those in residential areas. Overall, this model accounted for 29% of the variation in mean nest size per site. Polygyne sites were patchily distributed across Louisiana. The probability of a site being polygyne declined with mean monthly temperature for 1999 – 2003 and distance to the nearest commercial waterway suggesting that shipping activities may have played a role in the introduction of polygyne colonists to an area. Forested sites were also less likely to be polygyne than those in residential areas. Finally, the density of polygyne nests and ants increased with latitude whereas that of the monogyne form generally declined with latitude. The abundance of both social forms was also greater when they occurred alone. These data are consistent with the hypothesis that monogyne and polygyne S. invicta compete with one another. Received 28 July 2006; revised 2 March 2007; accepted 29 May 2007.  相似文献   

4.
Thelohania solenopsae is a pathogen of the red imported fire ant, Solenopsis invicta, which debilitates queens and eventually causes the demise of colonies. Reductions of infected field populations signify its potential usefulness as a biological control agent. Thelohania solenopsae can be transmitted by introducing infected brood into a colony. The social forms of the fire ant, that is, monogyny (single queen per colony) or polygyny (multiple queens per colony), are associated with different behaviors, such as territoriality, that affect the degree of intercolony brood transfer. T. solenopsae was found exclusively in polygyne colonies in Florida. Non-synchronous infections of queens and transovarial transmission favor the persistence and probability of detecting infections in polygynous colonies. However, queens or alates with the monogyne genotype can be infected, and infections in monogyne field colonies have been reported from Louisiana and Argentina. Limited independent colony-founding capability and shorter dispersal of alate queens with the polygyne genotype relative to monogyne alates may facilitate the maintenance of infections in local polygynous populations. Demise of infected monogyne colonies can be twice as fast as in polygyne colonies and favors the pathogen's persistence in polygyne fire ant populations. The social form of the fire ant reflects different physiological and behavioral aspects of the queen and colony that will impact T. solenopsae spread and ultimate usefulness for biological control.  相似文献   

5.
This study deals with dispersal behavior of sexuals and intraspecificvariation in queen numbers. The specific questions are: (1)Is there an association between male and female dispersal behaviorand the number of queens in a colony? (2) Is there an associationbetween individual behavior and physiological condition? (3)Do males and females from monogyne (one queen per colony) andpolygyne (several functional queens per colony) colonies differwith respect to size, weight, and physiological condition? Theresults show that both males and females are more prone to dispersein monogyne than in polygyne colonies. Moreover, males and femalesof both monogyne and polygyne colonies show dispersal polymorphism,suggesting that an increased tendency of reproductive femalesto stay in the maternal colony may cause monogyne colonies toswitch to polygyny. The propensity to disperse is associatedwith the physiological condition of individuals. Larger andheavier females containing more fat and glycogen preferentiallydisperse, whereas smaller ones with less fat and glycogen moreeasily dealate and mate without a previous nuptial flight. Maledispersal correlates positively to larger size and higher levelsof glycogen; fat contents do not increase during maturation.The females produced in monogyne colonies are larger, heavier,and contain more fat and glycogen than those produced in polygynecolonies. The males produced in monogyne colonies have relativelylonger wings and are heavier than those produced in polygynecolonies. However, there are no differences in size and fatcontents between males from monogyne and polygyne colonies.  相似文献   

6.
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.  相似文献   

7.
The fire ant Solenopsis invicta exists in two social forms, one with colonies headed by a single reproductive queen (monogyne form) and the other with colonies containing multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only the B allelic variant and polygyne colonies containing b-like variants as well. We generated new Gp-9 sequences from 15 Solenopsis species and combined these with previously published sequences to conduct a comprehensive, phylogenetically based study of the molecular evolution of this important gene. The exon/intron structure and the respective lengths of the five exons of Gp-9 are identical across all species examined, and we detected no evidence for intragenic recombination. These data conform to a previous suggestion that Gp-9 lies in a genomic region with low recombination, and they indicate that evolution of the coding region in Solenopsis has involved point substitutions only. Our results confirm a link between the presence of b-like alleles and the expression of polygyny in all South American fire ant species known to possess colonies of both social forms. Moreover, phylogenetic analyses show that b-like alleles comprise a derived clade of Gp-9 sequences within the socially polymorphic species, lending further support to the hypothesis that monogyny preceded polygyny in this group of fire ants. Site-specific maximum likelihood tests identified several amino acids that have experienced positive selection, two of which are adjacent to the inferred binding-pocket residues in the GP-9 protein. Four other binding-pocket residues are variable among fire ant species, although selection is not implicated in this variation. Branch-specific tests revealed strong positive selection on the stem lineage of the b-like allele clade, as expected if selection drove the amino acid replacements crucial to the expression of polygyne social organization. Such selection may have operated via the ligand-binding properties of GP-9, as one of the two amino acids uniquely shared by all b-like alleles is predicted to be a binding-pocket residue.  相似文献   

8.
Concurrent infections of Solenopsis invicta colonies with S. invicta virus 1 (SINV-1), SINV-2, and SINV-3 has been reported. However, whether individual ants were capable of supporting multiple virus infections simultaneously was not known, nor whether the social form of the colony (polygyne or monogyne) had an influence on the occurrence of multiple infection rates in individual ants. S. invicta field populations were sampled sequentially to establish whether multiple virus infections co-occurred in individual worker ants. In addition, the intra-colony virus infection rates were compared in monogyne and polygyne field colonies to determine whether social form played a role in the viral infection prevalence. All combinations of virus infection (SINV-1, SINV-2, or SINV-3 alone, SINV-1 & SINV-2, SINV-1 & SINV-3, SINV-2 & SINV-3, and SINV-1, SINV-2 & SINV-3) were detected in individual worker ants as well as queens in the field. Thus, individual S. invicta ants can be infected simultaneously with all combinations of the S. invicta viruses. Colony social form did have an influence on the intra-colony prevalence of multiple S. invicta virus infections. Polygyne colonies exhibited significantly greater intra- and inter-colony single and multiple virus infections compared with monogyne colonies.  相似文献   

9.
We describe genetic structure at various scales in native populations of the fire ant Solenopsis invicta using two classes of nuclear markers, allozymes and microsatellites, and markers of the mitochondrial genome. Strong structure was found at the nest level in both the monogyne (single queen) and polygyne (multiple queen) social forms using allozymes. Weak but significant microgeographic structure was detected above the nest level in polygyne populations but not in monogyne populations using both classes of nuclear markers. Pronounced mitochondrial DNA (mtDNA) differentiation was evident also at this level in the polygyne form only. These microgeographic patterns are expected because polygyny in ants is associated with restricted local gene flow due mainly to limited vagility of queens. Weak but significant nuclear differentiation was detected between sympatric social forms, and strong mtDNA differentiation also was found at this level. Thus, queens of each form seem unable to establish themselves in nests of the alternate type, and some degree of assortative mating by form may exist as well. Strong differentiation was found between the two study regions using all three sets of markers. Phylogeographic analyses of the mtDNA suggest that recent limitations on gene flow rather than longstanding barriers to dispersal are responsible for this large-scale structure.  相似文献   

10.
Both monogyne (single queen per colony) and polygyne (multiple queens per colony) populations of the fire ant Solenopsis invicta are good subjects for tests of kin selection theory because their genetic and reproductive attributes are well-characterized, permitting quantitative predictions about the degree to which sex investment ratios should be female-biased if workers and not queens control reproductive allocation. In the study populations, an investment ratio of 3 females: 1 male is predicted (a proportional investment in females of 0.75) in the monogyne form, whereas a proportional investment in females between 0.637 and 0.740 is expected in the polygyne form. To test these predictions, colonies from a single population of each social form were collected and censused during three different seasons. Consistent with their alternative modes of colony founding, monogyne colonies invested more in reproduction (sexual production) and less in growth/maintenance (worker production) than did the polygyne colonies. Overall, the sex investment ratios were female-biased in both forms, although there was considerable seasonal variation. After adjusting for sex-specific energetic costs, the proportional investment in females was 0.607 in the monogyne population, a value in between those expected under complete control by either the queen or the workers. However, when combined with data from four other previously studied monogyne populations in the U.S.A., the mean investment ratio did not differ significantly from the value predicted if workers have exclusive control. In the polygyne population, the proportional investment in females of 0.616 was consistent with the level of female bias expected under partial to complete worker control, although the potential influence of two confounding factors — possible contact with monogyne colonies and the preponderance of sterile diploid males — weakens this conclusion somewhat. Taken as a whole, the sex investment ratios of monogyne and polygyne populations of S. invicta are consistent with at least partial worker control. Of several ultimate and proximate explanations that have been proposed to explain inter-colonial variation in the sex investment ratio, only the effect of the primary sex ratio (female-determined eggs: male-determined eggs) laid by the queen appears to account for the observed variation among monogyne colonies. In the polygyne population, there is limited support for the hypothesis that greater resource abundance favors investment in females.  相似文献   

11.
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross‐fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.  相似文献   

12.
Aggression bioassays were used to investigate nestmate recognition in polygyne laboratory colonies of the imported fire ant, Solenopsis invictaBuren. Unlike workers from polygyne field colonies, laboratory-maintained (>10 weeks) workers exhibited well-developed nestmate recognition. As in monogyne colonies of this species, both heritable and environmentally acquired (diet) odors provided recognition cues and were roughly additive in their effect. Within diet treatments, polygyne colonies responded in a graded fashion to polygyne conspecifics, monogyne conspecifics, and heterospecifics (S. richteri Forel),thus suggesting incipient genetic divergence between the two S. invictasocial forms. Hypotheses to account for the acute intraspecific discrimination observed in the laboratory are presented. Empirical testing of these hypotheses will illuminate ecological constraints and proximate mechanisms underlying the reduced intercolony discrimination associated with natural polygyne colonies of this and other ant species.  相似文献   

13.
Abstract. The oviposition rate of individual queens of Solenopsis invicta Buren (Hymenoptera: Formicidae) in relation to their weight and number of queens present in the colony was investigated by direct 2 h observations. There is a strong positive correlation between the weight of a queen and its oviposition rate in both monogyne and polygyne colonies. However, the number of eggs laid per mg queen is higher for moonogyne queens than for polygyne queens. This difference is more evident when the total weight of queens present in a colony is considered. The individual queen oviposition rate is negatively correlated with the number of queens in the colony. In addition, the weight loss per egg laid is significantly greater for polygyne than for monogyne queens, probably due to differences in egg size. These data suggest that oviposition is more efficient in monogyne than in polygyne queens at the individual level; however, at the colony level, polygyne colonies produce significantly more eggs. Comparison of colony level efficiency predicts that polygyne colonies must have at least nine queens to compete reproductively with a mature monogyne queen. Therefore, oligogyny does not appear to be a viable strategy for S.invicata.  相似文献   

14.
This is the first report of Thelohania solenopsae infections in monogyne (single-queen) Solenopsis invicta colonies in the field. In a 0.2-ha plot near Baton Rouge, Louisiana, inter-colony prevalence was 63% infection in June, 1999, when the population was 100% monogyne. In February, 2000, 21% of 33 monogyne and 90% of 10 polygyne colonies were infected. By May, 2001, the polygyne colonies had disappeared and only one of 34 monogyne colonies was infected, the final detection of T. solenopsae in the plot. Colony size did not differ significantly among the four types (monogyne versus polygynexinfected versus uninfected).  相似文献   

15.
Abstract. 1. Phorid flies in the genus Pseudacteon are parasitoids of ants. Variation in host size preferences of four South American and two North American Pseudacteon species on monogyne and polygyne forms of their host Solenopsis species [ S. invicta Buren and S. geminata (F.), respectively] was documented.
2. Monogyne Solenopsis workers were, on average, significantly larger than polygyne workers, and the average size monogyne worker attacked was significantly larger than the average size polygyne worker attacked in four of the six Pseudacteon species.
3. Three South American Pseudacteon species attacked larger than average size workers, whereas one attacked smaller than average size workers, in both monogyne and polygyne forms. Both North American Pseudacteon species attacked larger than average size polygyne workers and smaller than average size monogyne workers.
4. Three Pseudacteon species were reared from eggs to adults in infected ants in the laboratory. The size of the emergent phorid fly was related positively to the size of the host worker ant, with females emerging from larger hosts. Similar patterns were documented for both monogyne and polygyne forms.
5. The mean size of worker host from which phorids emerged did not differ significantly between the monogyne and polygyne forms in the subsample of phorids reared to adults.
6. The observed patterns elucidate factors that may cause variation in Pseudacteon sex ratios, and have implications for biological control efforts of pest Solenopsis species.  相似文献   

16.
Both monogyne and polygyne colonies of Solenopsis invicta now occupy Taiwan. Although venom alkaloids of these ants have been described and synthesized, we here report on a quantitative analysis of the two social forms for the first time. The alkaloids were studied by gas chromatography coupled to mass spectrometry (GC-MS), and six major venom alkaloids were detectable in both types of workers. Both C13:C13:1 and C15:C15:1 ratios in alkaloid venom of monogyne workers were statistically higher than that of polygyne workers, but the sum of proportions of unsaturated alkaloids of polygyne workers was significantly higher than that of monogyne workers, regardless of growth temperature, sampling seasons or geographic location. Results of this study demonstrate that the difference in the proportions of unsaturated alkaloids and the ratios of C13:C13:1 and C15:C15:1 alkaloids might be a good indicator for differentiating monogyne and polygyne forms of S. invicta. Received 20 February 2008; revised 4 July 2008; accepted 5 August 2008.  相似文献   

17.
Males in polygyne populations of Solenopsis invicta are primarily sterile diploids and thought to not express the Gp-9 gene coding for a pheromone-binding protein affecting complex social behavior. We examined an aspect of the breeding system hitherto not considered--male Gp-9 genotypes in relation to sperm stored in queens. Four sites with varying frequencies of sympatric monogyne and polygyne colonies were sampled, including sexuals, workers, and broods from four colonies. Most queens were heterozygotes storing B sperm. Although predicted to be common, only 14 of 504 males were B or BB genotypes, suggesting strong selection. Increased frequency of polygyne colonies at each site paralleled increases in queens with b sperm (1.9-32.8%) and of noninseminated queens. The presence of both B and b sperm in 1.9-18.9% of queens, genotype profiles of colonies, and genotypes of offspring from individual queens suggest some frequency of multiple mating. The bb genotype, rather than an obligate, developmental lethal, was present in some queens and common in alates, workers, and brood. Selective mortality of sexuals may affect multiple aspects of the breeding system, including female-mediated dispersal, mating success, and gene flow.  相似文献   

18.
Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.  相似文献   

19.
Colony social organization in the fire ant Solenopsis invicta appears to be under strong genetic control. In the invasive USA range, polygyny (multiple queens per colony) is marked by the presence of the Gp-9 b allele in most of a colony’s workers, whereas monogyny (single queen per colony) is associated with the exclusive occurrence of the Gp-9 B allele. Ross and Keller, Behav Ecol Sociobiol 51:287–295 (2002) experimentally manipulated social organization by cross-fostering queens into colonies of the alternate form, thereby changing adult worker Gp-9 genotype frequencies over time. Although these authors showed that social behavior switched predictably when the frequency of b-bearing adult workers crossed a threshold of 5–10%, the possibility that queen effects caused the conversions could not be excluded entirely. We addressed this problem by fostering polygyne brood into queenright monogyne colonies. All such treatment colonies switched social organization to become polygyne, coincident with their proportions of b-bearing workers exceeding 12%. Our results support the conclusion that polygyny in S. invicta is induced by a minimum frequency of colony workers carrying the b allele, and further confirm that its expression is independent of queen genotype or history, worker genotypes at genes not linked to Gp-9, and colony genetic diversity.  相似文献   

20.
We surveyed 165 sites to determine the ecological factors that might influence the distribution and prevalence of Thelohania solenopsae, and its effect on the demography of the red imported fire ant (Solenopsis invicta) in Louisiana. The microsporidium was found in 9.9% of colonies and at 16% of sites. Its distribution was clumped within the state with the majority of infected colonies and sites occurring in two infection patches. The proportion of polygyne colonies was a strong (positive) predictor of the proportion of infected colonies at a site. Infected monogyne colonies, however, still accounted for nearly 20% of infected colonies, a much higher proportion than anticipated. Several other factors, including the numbers of colonies at a site, precipitation, proximity to commercial waterways and ports, and type of habitat were also retained in the multiple logistic regression model describing T. solenopsae prevalence. The microsporidium appears to adversely affect the occurrence of brood, and possibly the size of S. invicta colonies and the mass of workers. It, however, was not included in the multiple regression model of the number of colonies or the density of ants at a site. Although our findings do not imply causation, they have identified several variables that might influence the epizootiology of T. solenopsae. Future work should concentrate on experimentally manipulating these variables to confirm these relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号