首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of serum, dissolved oxygen (DO) concentration, and medium pH on hybridoma cell physiology were examined in a controlled batch bioreactor using a murine hybridoma cell line (167.4G5.3). The effect of serum was also studied for a second murine hybridoma cell line (S3H5/gamma 2bA). Cell growth, viability, cell density, carbohydrate and amino acid metabolism, respiration and energy production rates, and antibody production rates were studied. Cell growth was enhanced and cell death was decreased by increasing the serum level. The growth rates followed a Monod-type model with serum being the limiting component. Specific glucose, glutamine, and oxygen uptake rates and specific lactate and ammonia production rates did not change with serum concentrations. Amino acid metabolism was slightly influenced by the serum level. Cell growth rates were not influenced by DO between 20% and 80% air saturation, while the specific death rates were lowest at 20-50% air saturation. Glucose and glutamine uptake rates increased at DO above 10% and below 5% air saturation. Cell growth rate was optimal at pH 7.2. Glucose and glutamine uptake rates, as well as lactate and ammonia production rates, increased above pH 7.2. Metabolic rates for glutamine and ammonia were also higher below pH 7.2. The consumption or production rates of amino acids followed the glutamine consumption very closely. Cell-specific oxygen uptake rate was insensitive to the levels of serum, DO, and pH. Theoretical calculations based on experimentally determined uptake rates indicated that the ATP production rates did not change significantly with serum and DO while it increased continually with increasing pH. The oxidative phosphorylation accounted for about 60% of total energy production. This contribution, however, increased at low pH values to 76%. The specific antibody production rate was not growth associated and was independent of serum and DO concentrations and medium pH above 7.20. A 2-fold increase in specific antibody production rates was observed at pH values below 7.2. Higher concentrations of antibody were obtained at high serum levels, between 20% and 40% DO, and at pH 7.20 due to higher viable cell numbers obtained.  相似文献   

2.
Factors affecting cell growth and antibody production in a mouse hybridoma were investigated. Antibody was produced during the growth and decline phases of a batch culture with an increase in the specific rate of antibody production during the decline phase. The specific rate of antibody production was also increased in cells arrested by 2 mM thymidine, suggesting that cell proliferation and antibody production can be uncoupled. Reduced serum concentrations resulted in lower cell growth rates but increased antibody production rates. However, this trend was reversed in hybridomas which had been arrested by thymidine, since the highest antibody production rate was associated with high serum concentrations. Likewise, in proliferating cells, the optimum pH for antibody production (pH 6.8) was lower than the optimum pH for cell growth (pH 7.2), whereas in thymidine-blocked cells, the highest antibody production rate was at pH 7.2. High antibody production rates and product yields were also associated with low growth rates in continuous cultures. The possibility that antibody was under cell cycle control was investigated in synchronized hybridoma cultures. Antibody production occurred during G1 and G2 with a decline in the M phase and evidence of a further decline in the S phase. Thus antibody production was not restricted to the G1 and S phase in this hybridoma.  相似文献   

3.
Circadian rhythm is a fundamental biological system involved in the regulation of various physiological functions. However, little is known about a nature or function of circadian clock in human primary cells. In the present study, we have applied in vitro real time circadian rhythm monitoring to study human clock properties using primary skin fibroblasts. Among factors that affect human physiology, slightly lower extracellular pH was chosen to test its effects on circadian rhythm expression. We established human primary fibroblast cultures obtained from three healthy subjects, stably delivered a circadian reporter gene Bmal1-luciferase, and recorded circadian rhythms in the culture medium at pH 7.2 and 6.7. At pH 7.2, robust and sustained circadian rhythms were observed with average period length 24.47 ± 0.03 h. Such rhythms were also found at pH 6.7; however, period length was significantly shortened to 22.60 ± 0.20, amplitude was increased, and damping rate was decreased. The effect of exposure to low pH on the period length was reversible. The shortened period was unlikely caused by factors affecting cell viability because cell morphology and MTT assay showed no significant difference between the two conditions. In summary, our results showed that the circadian rhythm expression is affected at pH 6.7 in human primary fibroblasts without affecting cell viability.  相似文献   

4.
To maximize the production of flag-tagged cartilage oligomeric matrix protein angiopoietin-1 (FCA1) from Chinese hamster ovary (CHO) cells, the effects of culture pH and temperature on cell growth and FCA1 production were investigated. Cells were cultivated in a bioreactor at different culture pH (6.7, 6.9, 7.2, and 7.5) and temperatures (33 and 37 °C). Lowering the culture temperature suppressed cell growth while allowing maintenance of high cell viability for a longer culture period. The specific FCA1 productivity (q FCA1) was increased at low culture temperature. Accordingly, the highest FCA1 concentration was obtained at pH 7.2 and 33 °C, and was approximately 4.0-fold higher than that at pH 7.2 and 37 °C. However, aggregates and a monomeric form of FCA1, which are undesirable due to reduced biological activity or immunogenicity, were significant at pH 7.2 and 33 °C. It was also found that the expression pattern of FCA1 was affected more significantly by culture pH than by the culture temperature. FCA1 aggregation dramatically decreased at culture pH 7.5 regardless of the culture temperature. Furthermore, the monomeric form of FCA1 was not observed. Taken together, optimization of culture temperature and culture pH (33 °C and pH 7.5) significantly improves the production of biologically active FCA1 with tetrameric or pentameric forms from CHO cells.  相似文献   

5.
Purified populations of quiescent human tumour cells were isolated from plateau phase cultures of PMC-22 cells by centrifugal elutriation. Dilution into fresh medium resulted in these quiescent cells entering S phase exponentially with a t1/2 of 12 hr, after a 18-20-hr lag period during which cellular RNA content increased. Subsequent studies showed that recruitment of quiescent cells into the cell cycle could be regulated by extracellular pH. When exponentially growing PMC-22 cells were exposed to acidic extracellular pH levels, three growth patterns were observed: (1) Normal growth between pH 7.2 to pH 6.8; (2) A reduction in growth rate associated with accumulation of cells with a G1 DNA content between pH 6.7 and 6.4 (this was also shown to occur in a number of other tumour cell lines); (3) Non-cell-cycle-phase-specific arrest of growth at pH levels less than 6.3. Further studies with purified quiescent cell populations showed the possible existence of a pH-dependent restriction point in the G1 phase of these tumour cells. The implications of these observations to tumour biology are discussed.  相似文献   

6.
Two mutants of the facultative autotroph Hydrogenomonas eutropha were isolated by using a modified penicillin selection method. The mutation involved was unusual in that its effect on cellular growth was conditional with regard to extracellular pH and the type of substrate employed. Growth of both mutants was abnormal under autotrophic conditions and during heterotrophic cultivation in the presence of organic substrates which lacked an amino group. Abnormal growth was characterized by linear growth rates which were low at pH 6.0 and moderate at pH 7.2. In contrast, growth of the mutants was normal on most amino acids. Those substrates yielding abnormal growth were oxidized at normal rates by the mutants, indicating the mutation did not impair their uptake or metabolism. The data suggest that the mutants are defective in their ability to assimilate inorganic nitrogen into organic forms, and this defect is strongly influenced by pH.  相似文献   

7.
Rats were injected with 59Fe-ferrous citrate and bled thereafter at different times (16 h to 49 d). This gave rise to red cell populations in which cells corresponding in age to the time elapsed between injection and bleeding were labeled. The anticoagulant used was either acid-citrate-dextrose (ACD) with a pH adjusted to 7.3 or ACD (pH 5.1). Final pH of the collected blood was about 7.2-7.4 in the former case and 6.4-6.7 in the latter. Red cells were then centrifuged (5) and approximately 7-10% of the packed cells from the top and 7-10% from the bottom of the cell column collected. When reticulocytes are the predominant labeled red cell population, as in blood obtained for about 24 h after isotope injection, a fractionation of these cells and mature erythrocytes is in evidence only when blood is collected at the higher pH. Thus, at pH 7.2-7.4 ratios of specific radioactivities of cells in top fraction/cells in an unfractionated sample are about 3, whereas at pH 6.4-6.7, the analogous ratios are 1 or less. These differences in specific activity ratios, as a function of pH at collection, virtually disappear after about 4 d following isotope injection. The lower pH is known to increase the volume and decrease the density of mature red blood cells. The marked effect of pH on cellular fractionation could be correlated with the smaller change in rat reticulocyte density and volume in acid medium. At pH 6.4-6.7, the densities of mature erythrocytes and reticulocytes are so close that their physical separation by centrifugation is not feasible.  相似文献   

8.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

9.
The oxidation of exogenous NADH by Jerusalem artichoke ( Helianthus tuberosus L.) tuber mitochondria was strongly inhibited at pH 7.2 by EDTA, EGTA and mersalyl and by chlorotetracycline in the presence of Ca2+. This inhibition disappeared at pH 5.5 where about 50% activity was found as compared to controls at pH 7.2. The rate of oxidation of NADPH at pH 5.5 was the same as for NADH but it was inhibited by 50% by both EDTA and mersalyl.
Mitochondria from Arum maculatum spadices oxidised NADH and NADPH with pH optima of 7.2 and 6.5, respectively. In the presence of EDTA the optima shifted to 6.7 and 5.9, respectively, due to an inhibition at higher pH and a lack of inhibition at lower pH. At pH 6.7 NADH oxidation was completely insensitive to both EDTA and mersalyl whereas the oxidation of NADPH was inhibited by more than 50%. The inhibition of NAD(P)H oxidation by chelators at neutral pH was due to the removal of Ca2+ from the membranes in both types of mitochondria. The differences observed in the properties of NADH and NADPH oxidation suggest that two different dehydrogenases are involved. Because of the strong pH-dependence and the changes in chelator-sensitivity in the physiological pH-range 6–8 it is suggested that the properties of NAD(P)H oxidation provide the cell with important means of metabolic regulation.  相似文献   

10.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

11.
Rats were injected with59Fe-ferrous citrate and bled thereafter at different times (16 h to 49 d). This gave rise to red cell populations in which cells corresponding in age to the time elapsed between injection and bleeding were labeled. The anticoagulant used was either acid-citrate-dextrose (ACD) with a pH adjusted to 7.3 or ACD (pH 5.1). Final pH of the collected blood was about 7.2–7.4 in the former case and 6.4–6.7 in the latter. Red cells were then centrifuged (5) and approximately 7–10% of the packed cells from the top and 7–10% from the bottom of the cell column collected. When reticulocytes are the predominant labeled red cell population, as in blood obtained for about 24 h after isotope injection, a fractionation of these cells and mature erythrocytes is in evidence only when blood is collected at the higher pH. Thus, at pH 7.2–7.4 ratios of specific radioactivities of cells in top fraction/cells in an unfractionated sample are about 3, whereas at pH 6.4–6.7, the analogous ratios are 1 or less. These differences in specific activity ratios, as a function of pH at collection, virtually disappear after about 4 d following isotope injection. The lower pH is known to increase the volume and decrease the density of mature red blood cells. The marked effect of pH on cellular fractionation could be correlated with the smaller change in rat reticulocyte density and volume in acid medium. At pH 6.4–6.7, the densities of mature erythrocytes and reticulocytes are so close that their physical separation by centrifugation is not feasible.  相似文献   

12.
The human host cell line, F2N78, is a new somatic hybrid cell line designed for therapeutic antibody production. To verify its potential as a human host cell line, recombinant F2N78 cells that produce antibody against rabies virus (rF2N78) were cultivated at different culture pH (6.8, 7.0, 7.2, 7.4, and 7.6) and temperatures (33.0 °C and 37.0 °C). Regardless of the culture temperature, the highest specific growth rate was obtained at a pH of 7.0–7.4. Lowering the culture temperature from 37.0 °C to 33.0 °C suppressed cell growth while allowing maintenance of high cell viability for a longer period. However, it did not enhance antibody production because specific antibody productivity did not increase at 33.0 °C. The highest maximum antibody concentration was obtained at 37.0 °C and pH 6.8. The N-linked glycosylation of the antibody was affected by the culture pH rather than the temperature. Nevertheless, G1F was dominant and G2F occupied a larger portion than G0F in all culture conditions. Compared to the same antibody produced from recombinant CHO cells, the antibody produced from rF2N78 cells has more galactose capping and was more similar to human plasma IgG. Taken together, the results obtained here demonstrate the potential of F2N78 as an alternative human host cell line for therapeutic antibody production.  相似文献   

13.
Comparative immunogenicity of hepatitis B virus core and E antigens   总被引:14,自引:0,他引:14  
The nucleocapsid (hepatitis B core Ag (HBcAg] of the hepatitis B virus is a particulate Ag composed of a single polypeptide (p21). Although a non-particulate form of HBcAg designated hepatitis B e Ag (HBeAg) shares significant amino acid identity, the immune responses to these Ag appear to be regulated independently. This report describes the use of recombinant HBcAg and HBeAg to examine and compare murine T cell and B cell recognition of these related Ag. The HBcAg preparation was stable at pH 7.2 and 9.6 and expressed HBc antigenicity. However, the antigenicity of the HBeAg preparation was pH dependent. At pH 9.6 the HBeAg preparation was non-particulate and expressed HBe antigenicity exclusively; however, at pH 7.2 it was particulate and expressed both HBc and HBe antigenicities. Although this "hybrid" particle most likely does not exist naturally, it is a unique research reagent to investigate the interrelationship between HBcAg and HBeAg. HBcAg was significantly more immunogenic in terms of in vivo antibody production as compared to either the non-particulate or particulate forms of HBeAg. Nevertheless, in most murine strains HBcAg and HBeAg were equivalently immunogenic and crossreactive at the level of T cell activation. The disparity between anti-HBc and anti-HBe antibody production is best explained by the observation that HBcAg can function as a T cell-independent Ag whereas HBeAg is T cell dependent even when present within the same particulate structure as HBcAg. Furthermore, HBcAg was shown to function efficiently as an immunologic carrier moiety for the DNP hapten in athymic as well as euthymic mice in contrast to conventional carrier proteins. These results have implications relevant to the human immune responses to HBcAg and HBeAg during infection, and to vaccine development.  相似文献   

14.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

15.
中国仓鼠卵巢细胞(CHO)流加培养生产单克隆抗体是目前主流培养方式,其中环境参数(pH和温度)和营养成分均影响细胞生长、碳氮源代谢和外源蛋白表达,是培养过程中关键的控制参数。采用实验设计(design of experiment,DOE)方法研究培养参数(温度、pH)对CHO细胞生长和抗CD20抗体表达的影响,建立营养限制型氨基酸流加策略,实现抗CD20抗体的高表达。结果表明,温度是影响蛋白质表达的显著因素,35℃有助于提高细胞密度和目标抗CD20抗体表达,而pH对抗CD20表达影响不显著,且温度和pH无交互作用,经DOE预测分析最佳培养条件是温度35℃和pH7.0。在该最佳培养条件下,在培养后期酪氨酸和半胱氨酸的浓度都低于0.1mmol/L。在培养的第2天通过补加1.5mmol/L酪氨酸和1mmol/L半胱氨酸避免营养限制,抗CD20抗体表达水平提高了24.1%,且对蛋白糖型无影响。  相似文献   

16.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

17.
Eubacterium limosum grew with CO as the sole source of energy and formed acetate and CO2 as the major products. The generation time on CO was 7 h. Uninhibited growth occurred in cultures containing 50% CO or less, but growth occurred at all concentrations tested (i.e., up to 75% CO). The pH optimum for growth was 7.0 to 7.2, whereas growth was poor at a pH below 6.7. CO2 stimulated growth on CO. CO was preferentially utilized when both CO and H2 were present.  相似文献   

18.
Human-human hybridoma cells secreting a human monoclonal antibody were cultured in a serum-free medium containing various organic pH buffers in order to clarify their effects on cell growth and antibody production. Organic pH buffers having either one sulfonic acid and several acyclic amine moieties, or several cyclic amine moieties containing two amino nitrogen did not inhibit cell growth; while other organic buffers sulfonic acid moiety plus several cyclic amine moieties containing one amino nitrogen slightly decreased cell growth, but enhanced antibody production. Using Fujita's organic conceptual diagram, a relationship between the organicity and inorganicity of a pH buffer to cell growth and antibody production was found. pH buffers with large inorganicity and small organicity values were favorable for cell growth, and buffers with small inorganicity and large organicity values were preferred to enhance antibody production. Although the pH buffering range affects cell growth, its effect on antibody production is not clear. In conclusion, 2-morpholinoethanesulfonic acid (MES), 3-morpholino-propanesulfonic acid (MOPS) and 1, 2-N, N-bis[N, N-di(2-sulfonoethyl)piperazinyl]ethane (Bis-PIPES) are shown to be the most optimal of the buffers tested, because they enhanced antibody production without decreasing the cell growth among the pH buffers tested here.  相似文献   

19.
A mouse-mouse hybridoma cell line (167.4G5.3) was cultivated in a 1.5-L stirred-tank bioreactor under constant pH and dissolved oxygen concentration. The transient kinetics of cell growth, metabolism, and antibody production were followed by biochemical and flow cytometric methods. The cell-specific kinetic parameters (growth and metabolic rates) as well as cell size were constant throughout the exponential phase. Intracellular protein and RNA content followed a similar trend. Cell growth stopped when the glutamine in the medium was depleted. Glucose could not substitute for glutamine, as glucose consumption ceased after glutamine depletion. Ammonia and lactate production followed closely glutamine and glucose consumption, respectively. Alanine, glutamate, serine, and glycine were produced but other amino acids were consumed. The cells are estimated to obtain about 45% of the total energy from glycolysis, with the balance of the metabolic energy provided by oxidative phosphorylation. The antibody was produced at a constant rate in both the exponential and decline phases of growth. The intracellular antibody content of the cells remained relatively constant during the exponential phase of growth and decreased slightly afterwards.  相似文献   

20.
Summary TN-368 cells were seeded at 106 per flask in TNM-FH medium adjusted to a variety of pH levels which ranged from approximately 5.9 to 6.8. In general, growth was similar from pH 6.2 to nearly 6.7. The medium pH increased with time in culture to a maximum near 7.0 for all pH levels. Similar results for growth and pH increase were also obtained when the cells were plated at densities of 104 and 105 per flask. Both the fraction of attached cells and the relative intensity of attachment increased with seeding pH. Cells seeded near pH 6.7 or above frequently required vigrrous procedures such as trypsinization to detach them. DNA synthesis was measured and found to be similar for cells seeded in medium between pH 6.2 and 6.7. Colony forming efficiency increased from approximately 27% at pH 5.9 to 39% at 6.2, remained in the region of 40% between 6.2 and 6.7 with a peak of 48% at 6.6, and plunged abruptly to a few percent just above 6.7 and was near zero above 6.8. Colony morphology was optimal near pH 6.6. This work was supported by USPHS grant R01 CA34158, awarded by the National Cancer Institute, DHHS, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号