首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

2.
Recent results obtained by electron microscopic and biochemical analyses of greening Chlamydomonas reinhardtii y1 suggest that localized expansion of the plastid envelope is involved in thylakoid biogenesis. Kinetic analyses of the assembly of light-harvesting complexes and development of photosynthetic function when degreened cells of the alga are exposed to light suggest that proteins integrate into membrane at the level of the envelope. Current information, therefore, supports the earlier conclussion that the chloroplast envelope is a major biogenic structure, from which thylakoid membranes emerge. Chloroplast development in Chlamydomonas provides unique opportunities to examine in detail the biogenesis of thylakoids.Abbreviations Rubisco ribulose bisphosphate carboxylase/oxygenase - CAB Chl a/b-binding (proteins) - Chlide chlorophyllide - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - Pchlide protochlorophyllide  相似文献   

3.
Euglena gracilis and Chlamydomonas reinhardtii were used as model organisms to establish the best conditions for studying photosynthetic efficiency using the Light Pipette – experimental system, which enables sensitive detection of changes in oxygen evolution/consumption and an easy collection and digitalisation of data. Chlorophyll concentrations of 0.005, 0.025, 0.050 and 0.075 mgmL-1 were investigated using different light regimes. Cultures of E. gracilis at the same chlorophyll concentration absorbed more light(measured at 580 μmol m-2 s-1) than those of C. reinhardtii. Cell density had a considerable effect on the reliability of measurements. Chlorophyll concentrations between 0.025 mgChl ml-1 and 0.050 mgChlml-1 can be recommended when applying the Light Pipette system in bioassays using microalgae. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Maintenance of genomic stability is of crucial importance for all living organisms. It is no surprise that during evolution, a series of highly selective and efficient systems to detect DNA damage and control its repair have evolved. To this end, signal transduction pathways are involved in pausing the cell division cycle to provide time for repair, and ultimately releasing the cell cycle from arrest. Genetic components of the damage and replication checkpoints have been identified and a working model is beginning to emerge. This area of biological inquiry has received a great deal of attention in the past decade with the realization that the underlying regulatory mechanisms controlling the cell cycle are conserved throughout eukaryotic evolution. Many of the key players in this response have structural and functional counterparts in species as diverse as yeast and human. In recent years attention has also been paid to the plant kingdom suggesting that checkpoint controls have been highly conserved during evolution. The unicellular green alga Chlamydomonas reinhardtii is a suitable model organism for the study of basic cellular processes including cell cycle regulation and DNA repair. To investigate how algal cells accomplish these tasks, we have isolated mutants in the recognition and repair of DNA damage or in the response to DNA damage. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

5.
Barley ( Hordeum vulgare L. cvs Clipper, Procter, Astrix) seedlings were transferred from daylight to darkness and changes in chlorophyll a , chlorophyll b , protochlorophyllide and chlorophyllide (μ leaf−1) in either the first or second leaf determined spectrophotometrically after separating the esterified from unesterified pigments by partitioning between ammoniacal acetone and light petroleum ether. Chlorophyll a and b as well as protochlorophyllide accumulated in the dark. The ratio of chlorophyll to protochlorophyllide formed in the absence of light was 18:1. 5-aminolevulinic acid (10 m M ) promoted the synthesis of chlorophyll a and b and protochlorophyllide. Pigment synthesis and response to 5-aminolevulinic acid addition was related to tissue age. Mature tissue in the apical third of the leaf accumulated most chlorophyll, but per μg chlorophyll present at the time of transfer to darkness, was less efficient than immature tissue towards the base of the leaf. Immature tissue was also most responsive to added 5-aminolevulinic acid. Chlorophyll synthesis in the dark was accompanied by chloroplast development. Chloroplasts in immature leaf tissue increased in size and extent of thylakoid development when transferred from daylight to darkness. The results indicate that chlorophyll synthesis and chloroplast membrane development in light-grown barley continue into the dark phase of the diurnal cycle. A light-independent protochlorophyllide reductase in light-grown barley seedlings is postulated.  相似文献   

6.
Quantitative characteristics of photosynthetic electron transport were evaluated in vivo on the basis of the multi-exponential analysis of OJIP fluorescence transients induced by saturating actinic light. The OJIP fluorescence curve F(t), measured in Chlamydomonas reinhardtii cells, was transformed into the (1 − F O/F(t)) × (F V /F M)−1 transient, which is shown to relate to PS 2 closure. We assumed that kinetics of PS 2 closure during OJIP rise reflects time-separated processes related to the establishment of redox equilibrium at the PS 2 acceptor side (OJ), PQ pool (JI), and beyond Cyt b/f (IP). Three-exponential fitting was applied to (1 − F O/F(t)) × (F V /F M)−1 transient to obtain lifetimes and amplitudes of the OJ, JI, and IP components of PS 2 closure, which were used to calculate overall rates of reduction and re-oxidation of the PS 2 acceptor side, PQ pool, and intermediates beyond Cyt b/f complex. The results, obtained in the presence of inhibitors, oxidative reagents, and under different stress conditions prove the suggested model and characterize the introduced parameters as useful indicators of photosynthetic function.  相似文献   

7.
Yellow lupin seeds (Lupinus luteus) cytoplasmic tRNAGlu was isolated and the primary structure was determined to be: pUCCGUUGUAGUCAGDDGGDCAGGAUAUUCGGCUCUCACCCGAAAGACm5CCGGGTCAm1 AGU CCCGGCGACGGAACCAOH. It is 76 nucleotides long and contains 8 modified nucleosides: 2 residues of pseudouridine, ribothymidine, 3 dihydrouridines, 5-methylcytosine and 1-methyladenosine. This tRNAGlu assayed in -aminolevulinic acid synthesis was shown to be inactive. Its structural festures are discussed.  相似文献   

8.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110–114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.  相似文献   

9.
Chlorophyll (Chl) a fluorescence transient, a sensitive and non-invasive probe of the kinetics and heterogeneity of the filling up of the electron acceptor pool of Photosystem II (PS II), was used to characterize D1-mutants of Chlamydomonas reinhardtii. Using a shutter-less system (Plant Efficiency Analyzer, Hansatech, UK), which provides the first measured data point at 10 s and allows data accumulation over several orders of magnitude of time, we have characterized, for the first time, complete Chl a fluorescence transients of wild type (WT), cell wall less (CW-15) C. reinhardtii and several herbicide-resistant mutants of the D1 proteins: D1-V219I A251V, F255Y, S264A G256D and L275F. In all cases, the Chl a fluorescence induction transients follow a pattern of O-J-I-P where J and I appear as two steps between the minimum Fo (O) and the maximum Fmax (Fm, P) levels. The differences among the mutants are in the kinetics of the filling up of the electron acceptor pool of PS II (this paper) in addition to those in the re-oxidation kinetics of QA to QA, published elsewhere (Govindjee et al. (1992) Biochim Biophys. Acta: 1101: 353–358; Strasser et al. (1992) Archs. Sci. Genève 42: 207–224) and not in the ratio of the maximal fluorescence Fm to the initial fluorescence Fo. The value of this experimental ratio is Fm/Fo = 4.4±0.21 independent of the mutation. At 600 W m–2 of 650 nm excitation, distinct hierarchy in the fraction of variable Chl a fluorescence at the J level is observed: S264A > A251V G256A > L275F V219I > F255Y CW-15 WT. At 300 and 60 W m–2 excitation, a somewhat similar hierarchy among the mutants was observed for the intermediate levels J and I. Addition of bicarbonate-reversible inhibitor formate did not change the O to J phases, slowed the I to P rise, and in many cases, slowed the decay of fluorescence beyond the P level. These observations are interpreted in terms of formate effect being on the acceptor rather than on the donor side (S-states) of PS II. The formate effect was different in different mutants, with L275F being the most insensitive mutant followed by others (V219I, F255Y, WT, A251V and S264A). Further, in the presence of high concentrations of DCMU, identical transients were observed for all the mutants and the WT.The quantum yield of photochemistry of PS II, calculated from 1-(Fo/Fm), is in the range of 0.73 to 0.82 for the WT as well as for the mutants examined. Thus, in contrast to differences in the kinetics of the electron acceptor side of PS II, there were no significant differences in the maximum quantum yield of PS II, among the mutants tested. We suggest that earlier photochemistry yield values were much lower (0.4–0.6) than those reported here due to either higher measured values of Fo by instruments using camera shutters, or due to the use of cells grown in less than-optimal conditions.
  相似文献   

10.
Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).  相似文献   

11.
The effect of dibromothymoquinone on chlorophyll fluorescence was studied in Chlamydomonas reinhardtii cells using PAM and PEA fluorometers. Dibromothymoquinone was shown to affect differently control cells incubated in complete medium and S-starved cells. The fluorescence yield in the control suspension considerably increased in the presence of the inhibitor. Presumably, this can be due to inactivation of protein kinase, as a result of which part of light-harvesting complex II that could have diffused from the stacking zone of the membrane into the lamellar zone towards photosystem I remains close to photosystem II. In S-starved cells, whose photosynthetic apparatus is in state 2, the fluorescence level declines in the presence of dibromothymoquinone. The JIP testing of induction curves (O-J-I-P fluorescence transient) suggests that dibromothymoquinone inhibits both light-harvesting complex II kinase and photosynthetic electron transport when added to the control, while in the starved cells it acts predominantly as an electron acceptor.  相似文献   

12.
A cell wall lytic enzyme (gamete wall-autolysin) and a polyclonal antiserum raised against one of the major cell wall glycopeptides ofChlamydomonas reinhardtii were used to study their cross-reactivities with the cell walls of variety of members of the Volvocales. Lytic enzyme was able to digest completely the cell walls of five species ofChlamydomonas (C. reinhardtii group), six species ofGonium and two species ofAstrephomene. The colonial structures ofGonium andAstrephomene were broken into individual cells by exposure to the enzyme and protoplasts were then formed. These organisms also showed a strong cross-reactivity with anti-cell wall glycopeptide by an indirect-immunofluorescence test. The cell walls ofChlamydomonas angulosa, Dysmorphococcus globosus, Pandorina morum, Eudorina elegans, Volvulina steinii, Pleodorina california andVolvox carteri all showed a strong cross-reactivity to the antibody, although they were insensitive to the lytic enzyme. Many other species ofChlamydomonas, Carteria crucifera, Chlorogonium elongatum, Polytoma uvella, Haematococcus lacustris, Lobomonas piriformis, Phacotus lenticularis, Pteromonas angulosa, Stephanosphera pluvialis, andPyrobotrys casinoensis had cell walls which were resistant to the enzyme and showed no or weak cross-reactivity with the antibody. Based on the results, a possible evolutionary sequence from a unicellular relative ofC. reinhardtii to the multicellular algae is discussed.  相似文献   

13.
14.
The Ypt/Rab proteins are small GTPases, which belong to the Ras superfamily and have been shown to be involved in endo-and exocytosis in mammalian cells and yeast. Using affinity-purified antibodies specific for four Ypt proteins, namely Ypt1p, Ypt4p, Ypt5p and Ypt6p, of the multicellular green alga Volvox carteri (YptVp) and its close unicellular relative Chlamydomonas reinhardtii (YptCp), we examined the abundance of the corresponding antigens during the asexual life cycle of Volvox, and their intracellular localization. The YptV proteins were found in all stages throughout the asexual life cycle and are tightly associated with intracellular membranes. Indirect immunofluorescence revealed that YptV4p, YptV5p and YptV6p are present in perinuclear regions of the cell, indicating an association with the Golgi region. Golgi localization of YptV4p and YptV6p in Volvox was confirmed by immunogold electron microscopy. In contrast, we found Ypt1p associated with the contractile vacuole in both V. carteri and C. reinhardtii. Furthermore, the YptV proteins were also detected along the entire length of the flagella of somatic Volvox cells. This flagellar location was substantiated by western blot analysis of extracts prepared from isolated flagella of both algae. While localization to exocytic compartments is in agreement with the established Ypt/Rab function in intracellular vesicle transport of eukaryotic cells, presence in the algal flagellum is the first hint of a possible role for small G proteins also in motility organelles.  相似文献   

15.
Dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, contains two [4Fe–4S] clusters, one in the L-protein ((BchL)2) and the other in the NB-protein ((BchN–BchB)2). The reduced NB-cluster in the NB-protein, which is ligated by 1Asp/3Cys residues, showed a broad S = 3/2 electron paramagnetic resonance signal that is rather rare in [4Fe–4S] clusters. A 4Cys-ligated NB-cluster in the mutated variant BchB–D36C protein, in which the Asp36 was replaced by a Cys, gave a rhombic normal S = 1/2 signal and lost the catalytic activity. The results suggest that Asp36 contributes to the low redox potential necessary to reduce protochlorophyllide.  相似文献   

16.
17.
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES 2-(N-Cyclohexylamino)ethanesulphonic acid - MOPS 3(N-morpholine)propanesulphonic acid  相似文献   

18.
Klaus Apel  Klaus Kloppstech 《Planta》1980,150(5):426-430
The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein (LHCP) is investigated in wild-type barley (Hordeum vulgare L.) and in the chlorophyll b-less mutant chlorina f2. In dark-grown plants a short red light pulse triggers the appearance of mRNA activity for the LHCP. While the accumulation of this mRNA is controlled by phytochrome (Apel (1979) Eur. J. Biochem. 97, 183–188), the red light treatment is not sufficient to induce the appearance of the LHCP within the membrane. Thus, at least one of the subsequent steps in the biosynthetic pathway leading to the assembly of the LHCP is controlled by light. The red light-induced mRNA is taken up into the polysomes during the subsequent dark period and is translated in vitro in a cell-free protein synthesizing system. However, an accumulation of the freshly synthesized polypeptide within the plant is not observed. The apparent instability of the polypeptide might be explained by the deficiency of chlorophyll in the red light-treated plants. In the chlorophyll b-less barley mutant chlorina f2 an accumulation of the freshly synthesized apoprotein of the LHCP can be observed in the light. Thus, chlorophyll a formation seems to be a light-dependent step which is required for the stabilization of the LHCP.Abbreviations mRNA messenger RNA - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecylsulfate - LHCP light-harvesting chlorophyll a/b protein  相似文献   

19.
By spectral methods, the final stages of chlorophyll formation from protochlorophyllide were studied using etiolated pea, bean, barley, wheat and maize plants in early stages (4 days) of growth. For these juvenile plants, along with the reaction chain known for mature (7–9-day-old) plants, a new reaction chain was found, which started with phototransformation of the long-wavelength form Pchlide 686/676(440) into Pchlide 653/648(440). (Pchlide 653/648(440) differs from the main known precursor form Pchlide 655/650(448)). The subsequent photoreduction of Pchlide 653/648(440) leads to the formation of Chlide 684/676(440), which is transformed into Chl 688/680(440) in the course of a dark reaction. After completion of this reaction, fast (20–30 s) quenching of the low-temperature fluorescence of the reaction product is observed with the formation of non-fluorescent Chl 680. The reaction accompanied by pigment fluorescence quenching is absent in pea mutants with depressed function of Photosystem II reaction centers. This suggests that the newly found reaction chain leads to the formation of chlorophyll of the Photosystem II core. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号