首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many plants produce cyanogenic glucosides as part of their chemical defense. They are alpha-hydroxynitrile glucosides, which release toxic hydrogen cyanide (HCN) upon cleavage by endogenous plant beta-glucosidases. In addition to cyanogenic glucosides, several plant species produce beta- and gamma-hydroxynitrile glucosides. These do not release HCN upon hydrolysis by beta-glucosidases and little is known about their biosynthesis and biological significance. We have isolated three beta-hydroxynitrile glucosides, namely (2Z)-2-(beta-D-glucopyranosyloxy)but-2-enenitrile and (2R,3R)- and (2R,3S)-2-methyl-3-(beta-D-glucopyranosyloxy)butanenitrile, from leaves of Ribesuva-crispa. These compounds have not been identified previously. We show that in several species of the genera Ribes, Rhodiola and Lotus, these beta-hydroxynitrile glucosides co-occur with the L-isoleucine-derived hydroxynitrile glucosides, lotaustralin (alpha-hydroxynitrile glucoside), rhodiocyanosides A (gamma-hydroxynitrile glucoside) and D (beta-hydroxynitrile glucoside) and in some cases with sarmentosin (a hydroxylated rhodiocyanoside A). Radiolabelling experiments demonstrated that the hydroxynitrile glucosides in R. uva-crispa and Hordeum vulgare are derived from L-isoleucine and L-leucine, respectively. Metabolite profiling of the natural variation in the content of cyanogenic glucosides and beta- and gamma-hydroxynitrile glucosides in wild accessions of Lotus japonicus in combination with genetic crosses and analyses of the metabolite profile of the F2 population provided evidence that a single recessive genetic trait is most likely responsible for the presence or absence of beta- and gamma-hydroxynitrile glucosides in L. japonicus. Our findings strongly support the notion that the beta- and gamma-hydroxynitrile glucosides are produced by diversification of the cyanogenic glucoside biosynthetic pathway at the level of the nitrile intermediate.  相似文献   

2.
Tissue cell cultures of Delphinium staphisagria L. produced three dianthramide glucosides N-(2'-beta-glucopyranosylsalicyl)-5-hydroxyanthranilic acid methyl ester, N-(2'-beta-glucopyranosyl-5'-methoxysalicyl)-5-hydroxyanthranilic acid methyl ester and N-(2'-beta-glucopyranosyl-5'-hydroxysalicyl)-5-hydroxy-6-methoxyanthranilic acid methyl ester, together with known methyl esters of N-salicylanthranilic acid and N-(2'-beta-glucopyranosyl-5'-hydroxysalicyl)-5-hydroxyanthranilic acid. Structures of the glucosides were established by MS, 1-D and 2-D NMR techniques.  相似文献   

3.
Catharanthus roseus cell suspension cultures converted exogenously supplied curcumin to a series of glucosides, none of which has been found in nature so far. The efficiency of glucosylation was dependent on culture stage of the cells and medium sucrose concentration. Methyl jasmonate and salicylic acid enhanced the glucoside formation only when they were added to the cultures prior to the addition of curcumin. The glucoside yield was 2.5 micromol/g fresh weight of the cells at an optimal culture condition. The water solubility of curcumin-4',4"-O-beta-D-digentiobioside was 0.65 mmol/ml, which was 20 million-fold higher than that of curcumin.  相似文献   

4.
From the leaves of Helicia cochinchinensis, collected on Okinawa Island, seven phenolic glucosides and two terpenic glucosides were isolated. Five of the phenolic glucosides were previously known, being identified with p-coumaric and ferulic acids glucosyl esters, rhodioloside, helicidiol, and naringenin 5-O-beta-D-glucopyranoside. The structures of two other phenolic glucosides, named heliciosides A and B, were elucidated to be 5-O-beta-D-glucosides of 3-hydroxyflavanone, namely aromadendrin and taxifolin, by means of spectroscopic analyses. The two terpenic glucosides were identified with ampelopsisionoside and icariside C1.  相似文献   

5.
From the aerial parts of Crepidiastrum lanceolatum, six guaiane-type sesquiterpene glucosides, lanceocripidiasides A-F were isolated together with five known sesquiterpene glucosides, ixerin Y, crepidialanceosides A and B, and youngiasides A and D, two known megastigmane glucosides, icariside B1 and corchoionoside A, and benzyl 6'-O-beta-D-apiofuranosyl-beta-D-glucopyranoside. Structures were elucidated by spectroscopic analyses.  相似文献   

6.
Two iridoid glucosides namely; 6-acetylantirrinoside (1), 6'-O-p-hydroxybenzoylantirrinoside (2) were isolated from the aerial parts of Kickxia abhaica. Beside that, three known iridoid glucosides, antirrinoside (3), antirride (4) and mussaenosidic acid (5), one flavone glycoside (6) and a hexitol, d-mannitol (7) were isolated. The structures of the iridoid glucosides 1-2 were established by 1D and 2D NMR spectral data, including COSY, HMQC and HMBC experiments, as well as HRMS.  相似文献   

7.
The chemical investigation of leaves of Bridelia glauca f. balansae afforded six megastigmane glucosides, named bridelionosides A-F, along with seven known megastigmane glucosides. Their structures were determined by a combination of spectroscopic analyses and by application of the modified Mosher's method.  相似文献   

8.
Polar constituents of celery seed   总被引:7,自引:0,他引:7  
From the water-soluble portion of the methanol extract of celery seed (fruit of Apium graveolens L.) five sesquiterpenoid glucosides (celerioside A-E) and three phthalide glycosides (celephtalide A-C) were isolated together with six aromatic compound glucosides, two norcarotenoid glucosides and a lignan glucoside. Their structures were determined by spectral investigations.  相似文献   

9.
Iridoid glucosides from roots of Vietnamese Paederia scandens   总被引:5,自引:0,他引:5  
Four iridoid glucosides, three of which are dimeric were isolated from the methanol extract of roots of Vietnamese Paederia scandens (Lour) Merrill together with the five known glucosides, paederoside, asperuloside, paederosidic acid, asperulosidic acid and geniposide. Seven sulfur-containing iridoid glucosides were also isolated. The structures of the iridoid glucosides were determined by a combination of high-resolution NMR, MS, IR and UV spectra, and chemical reaction such as acetylation.  相似文献   

10.
A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.  相似文献   

11.
Quassinoid glucosides, javanicosides I, J, K and L, were isolated from the seeds of Brucea amarissima (Lour.) Desv. ex B. A. Gomes (Simaroubaceae), along with two known quassinoids, i.e. bruceins D and E, and seven known quassinoid glucosides, yadanziosides B, C, E, I and K, bruceoside B and yadanzigan. Their structures were elucidated by analysis of the spectral data and chemical evidence.  相似文献   

12.
Cyanogenesis in plants and arthropods   总被引:1,自引:0,他引:1  
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are regarded as having an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption, but recent investigations demonstrate additional roles as storage compounds of reduced nitrogen and sugar that may be mobilized when demanded for use in primary metabolism. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own defense against predators. A few species of arthropods (within diplopods, chilopods and insects) are able to de novo biosynthesize cyanogenic glucosides and some are able to sequester cyanogenic glucosides from their food plant as well. This applies to larvae of Zygaena (Zygaenidae). The ratio and content of cyanogenic glucosides is tightly regulated in Zygaena filipendulae, and these compounds play several important roles in addition to defense in the life cycle of Zygaena. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the involvement of hydrogen cyanide in male attraction and nitrogen metabolism. As more plant and arthropod species are examined, it is likely that cyanogenic glucosides are found to be more widespread than formerly thought and that cyanogenic glucosides are intricately involved in many key processes in the life cycle of plants and arthropods.  相似文献   

13.
The growth and sweet diterpene glucosides of Stevia plants propagated by stem-tip cultures were compared with those of the control plants propagated by seeds. There was no significant difference between the two groups both in growth and in chemical composition. As for the contents of sweet diterpene glucosides, however, the clonal plants showed significantly smaller variations than the sexually propagated plants; they were almost as homogeneous as the plants propagated by cuttings. These results suggest that the clonal propagation by stem-tip culture is an effective method of obtaining a population of uniform plants for the production of sweet diterpene glucosides.  相似文献   

14.
The root tips of Ruta graveolens (common rue) show strong autofluorescence of acridone alkaloids, which are characteristic secondary metabolites of this plant. To study the specific distribution and accumulation of acridone alkaloids in various root segments of Ruta graveolens, root material was harvested from genetically transformed root cultures and extracts were investigated by chromatographic techniques and HPLC-(1)H NMR spectroscopy. The cells of the elongation and differentiation zones contained acridone glucosides and large amounts of acridone alkaloids, mainly rutacridone. Gravacridondiol glucoside was identified as the dominant secondary compound of the root tips and its structure revised by means of spectroscopic methods. In addition, minor acridones, including the structurally revised gravacridontriol glucoside and unknown natural products, were found in the root tip.  相似文献   

15.
Zagrobelny M  Møller BL 《Phytochemistry》2011,72(13):1585-1592
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.  相似文献   

16.
Furanoflavonoid glycosides from Pongamia pinnata fruits   总被引:2,自引:0,他引:2  
Ahmad G  Yadav PP  Maurya R 《Phytochemistry》2004,65(7):921-924
Pongamia pinnata fruits afforded three new furanoflavonoid glucosides, pongamosides A-C (1-3), and a new flavonol glucoside, pongamoside D (4). The structures of these compounds were established on the basis of spectroscopic studies. This is the first time that furanoflavone glucosides have been found as naturally occurring compounds.  相似文献   

17.
From a 1-BuOH-soluble fraction of the MeOH extract of leaves of Euodia meliaefolia, collected in Okinawa, seven megastigmane glucosides, named euodionosides A-G, were isolated together with three known megastgmane glucosides, and two aliphatic and three phenolic compounds. Their structures were elucidated through a combination of spectroscopic analyses and application of the modified Mosher's method.  相似文献   

18.
The leaves of Hasseltia floribunda were examined for their chemical constituents. Twelve phenolic glucosides, namely three hydroxycyclohexenyl acyl glucosides, four acylated salicortin derivatives, and five coumaroyl salicin derivatives, were isolated along with eight known phenolic glycosides, six known flavones, and two known sesquiterpenoid cyclohexenone derivatives. The structures of the isolated compounds were elucidated by NMR spectroscopic and HRMS spectrometric methods and by comparing analytical data with those of related structures.  相似文献   

19.
Phenylpropanoid glycosides of Gnidia polycephala   总被引:1,自引:0,他引:1  
Two phenylpropanoid glucosides, 2-O-beta-D-glucosyloxy-4-methoxybenzenepropanoic acid and its methyl ester, together with syringin and adicardin were isolated from the stem of Gnidia polycephala and characterized by physical and spectroscopic data.  相似文献   

20.
In a chemosystematic investigation of Digitalideae (Plantaginaceae), the water-soluble part of extracts of two species of Digitalis, two species of Isoplexis, as well as Erinus alpinus and Lafuentea rotundifolia were studied with regard to their content of main carbohydrates, iridoids and caffeoyl phenylethanoid glycosides (CPGs). Digitalis and Isoplexis contained sorbitol, cornoside and a number of other phenylethanoid glycosides including the new tyrosol beta-D-mannopyranoside, sceptroside but were found to lack iridoid glucosides. Erinus contained mainly glucose, the new 8,9-double bond iridoid, erinoside, and a number of known iridoid glucosides including two esters of 6-rhamnopyranosylcatalpol, as well as the CPG poliumoside. Finally, Lafuentea was characterized by the presence of glucose, aucubin and cryptamygin B but apparently lacked CPGs. The chemosystematic significance of the isolated compounds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号